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ABSTRACT :  We report on a collinear laser spectroscopy measurement of the

nuclear charge radius of 39Ca (I=3/2), yielding δ<r2>40,39 = -0.127(16) fm2.  Within the

experimental accuracy, the N=20 neutron shell closure has no influence on the charge

radii of the calcium isotopes.
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The nuclear structure of the calcium isotopes having a closed proton shell

(Z=20) and reaching two neutron shell closures (N=20,28) with the naturally occurring

isotopes, has been studied extensively for many years.  The nuclear charge distribution

of the isotopes with neutrons in the fp-shell (N>20) has been investigated  by muonic

x-ray spectroscopy [1], electron scattering [2] and optical spectroscopy [3-8].  A

parabolic behaviour of the mean square charge radii between N=20 and N=28 is the

essence of the results. Several theoretical approaches were proposed to reproduce the

data [9-12], and it was found that an essential role is played by the contribution of

higher-order collective vibrations.  For isotopes above the N=28 shell closure, the only

experimental information on the nuclear charge distribution was obtained by a collinear

laser spectroscopy measurement of the mean square charge radius of  50Ca [13].  At

N=28, the shell closure is prominently reflected in the minimum value of the charge

radius occurring for 48Ca as compared to the neighbouring isotopes.  From 48Ca, which

has nearly the same radius as 40Ca, the radii increase steeply with a 50Ca value close to

the one of 44Ca.  In this report we discuss the extension of  collinear laser spectroscopy

to an isotope below the N=20 shell closure and present the measurement of the 39Ca

(I=3/2) nuclear charge radius with respect to the one of 40Ca.

This change in mean square charge radius between 39Ca and 40Ca is deduced

from the measurement of the isotope shift IS40,39 in the transition 4s 2S1/2 → 4p 2P1/2

(λ=397.0 nm) of singly ionized calcium.  The method is basically the one described in

ref. [14], but it makes use of radioactivity detection in order to discriminate the weak

beam of 39Ca from the huge background of stable 39K.  Here the experimental

procedure will be sketched only briefly.  After the impact of the pulsed 1 GeV proton

beam of the CERN PS-BOOSTER (seven 2.4µs long pulses with 2-3 x 1013 protons

per 14.4s supercycle) on a titanium target, neutron-deficient calcium isotopes are

evaporated, ionized by surface ionization on tungsten, accelerated to 33 kV and
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transmitted through the ISOLDE on-line mass separator [15].  The yield for 39Ca is a

few times 104 ions per proton pulse, and the stable 39K ion beam has an intensity of

about 5 x 1010 ions/s.  In an optical pumping zone of about 1.5m length the 39Ca beam

is merged with a cw dye laser beam.  The interaction frequency between the ions and

the laser light is Doppler-tuned across the resonances by varying the electrical potential

applied to this optical pumping zone.  At resonance, the ground-state population is

transferred to the low-lying metastable 3d 2D3/2
 state by repeated excitation to the 4p

2P1/2 state which  partially decays into the metastable state.  Further downstream the

ion beam is decelerated to a residual energy of 5 keV and guided through an open

sodium vapour cell, where it is partially neutralized.  Since at this low energy the

neutralization cross section for the ground state is about 3 times lower than for the

metastable state [16], the change in atomic state of the ions at resonance is efficiently

transformed into a change in charge state.  Finally the remaining ions are deflected and

the neutral atoms are implanted into a tape.  The emitted β-radiation is detected using

a scintillator, surrounding the tape with a total solid angle of  70 % (T1/2(
39Ca) = 860

ms).  The spectrum of the reference isotope 40Ca was recorded before and after each

measurement on 39Ca by detecting the fluorescence photons (λ=866 nm) from the

decay of the 4p 2P1/2 to the metastable 3d 2D3/2 state.  This detection scheme allowed to

block the 397 nm stray laser light by an optical filter. As an additional consistency

check, the spectrum of 44Ca was recorded in the same way.

The voltages applied to the optical pumping zone are converted into

frequencies relative to the resonance position of 40Ca. The final spectrum for 39Ca is

shown in figure 1.  The total measuring time for the low frequency doublet was 32s

(corresponding to 16 proton pulses)  per channel.  Only the stronger of the high-

frequency hyperfine components (the other one is expected to be about 5 times

weaker) was detected by accumulating data during 200s (98 proton pulses) per
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channel.  The fitted line positions of these three hyperfine components yield the

magnetic dipole hyperfine interaction constants A4s and A4p as well as the isotope shift

IS40,39.  The value deduced for the ratio A4s/A4p (5.53(11)) coincides with the more

accurate value known from the study of the stable isotope 43Ca (5.53(4)) [17].

Moreover, the value for the nuclear magnetic moment (µ(39Ca)=1.022(4)µN) deduced

from A4s(
39Ca)  in combination with the A4s factor and the magnetic moment of 43Ca

[18] agrees perfectly with the literature value : µ(39Ca) = 1.0216(2)µN [19].

Advantage was taken from this indirect, but more accurate information about the A-

factors, in order to reduce the statistical uncertainty of the isotope shift from 4.0 to 3.0

MHz.  To account for the relative voltage measurement uncertainty of 10-4, a

systematic error of 2.3 MHz is included in the final result for the isotope shift :

IS40,39  = -222.2(3.0)[2.3] MHz

Following the procedure described in refs. [8,13], the change in the nuclear

mean square charge radius between 40Ca and 39Ca is deduced from the isotope shift

according to :

IS K m A m A
m A m A

K m A m A
m A m A

F rA A NMS SMS A A, ' , '( ' ) ( )
( ' ) ( )

( ' ) ( )
( ' ) ( )

= ⋅ − + ⋅ − + ⋅ 〈 〉δ 2

For the transition studied, the normal mass shift constant is KNMS  = 414.3 GHz amu,

the specific mass shift constant KSMS = -9.2(3.8) GHz amu, and the field shift factor F

= -283(6) MHz/fm2 [8].  This yields the difference of the radii :

δ<r2>40,39 = <r2>39 - <r2>40 = -0.127(16) fm2 .
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This new result is incorporated in figure 2 where the changes in mean square

charge radii within the calcium isotopic series are plotted.  The behaviour at the shell

closure at N=20 is smooth, similar to earlier observations on the potassium radii (19 ≤

N ≤ 28) [20] and very recently also for an extended series of sd-shell isotopes of argon

(15 ≤ A ≤ 28) [21]. This is in qualitative agreement with recent investigations of

ground-state properties of Z=14-20 nuclei [22] where for different microscopic

approaches a smooth behaviour of charge radii at the neutron shell closure N=20 was

calculated.  The disappearance of the shell effect at N=20 is discussed in detail in our

recent paper on the argon isotopes [21], where physics arguments are given for the

results of microscopic and semi-empirical calculations.  Quantitative information about

the shell-closure effect in calcium can only be obtained by comparing the odd-N 39Ca

radius with odd-N values within the fp-shell.  In this way the odd-even staggering does

not influence the conclusions.  Combining our data with those from [5], we find :

δ<r2>41,39 = -0.115(18) fm2 and δ<r2>43,41 = -0.129(9) fm2.  Within the error limits,

these differential radii are the same, meaning that the effect of the neutron shell closure

at N=20 on the mean square radius is very small, in contrast to the striking shell effect

at N=28.

This work has been funded by the German BMBF under contract numbers 06

MZ 501 I and 06 MZ 566, and by the Belgian NFWO.
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Figure Captions

Figure 1 :  The 4s2S1/2 - 4p2P1/2 transition in 39Ca shown as the β-count rate vs. the

frequency relative to the resonance frequency of 40Ca : a) the low frequency

components; b) the highest frequency component

Figure 2 :  Experimental values for the mean square nuclear charge radii of the calcium

isotopes relative to 40Ca [6,13], including the new result for 39Ca.


