15 research outputs found

    Comprehensive evaluation of genetic variation in S100A7 suggests an association with the occurrence of allergic rhinitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A7 is a calcium-binding protein with chemotactic and antimicrobial properties. S100A7 protein levels are decreased in nasal lavage fluid from individuals with ongoing allergic rhinitis, suggesting a role for S100A7 in allergic airway inflammation. The aims of this study were to describe genetic variation in <it>S100A7 </it>and search for associations between this variation and allergic rhinitis.</p> <p>Methods</p> <p>Peripheral blood was collected from 184 atopic patients with a history of pollen-induced allergic rhinitis and 378 non-atopic individuals, all of Swedish origin. DNA was extracted and the <it>S100A7 </it>gene was resequenced in a subset of 47 randomly selected atopic individuals. Nine polymorphisms were genotyped in 184 atopic and 378 non-atopic individuals and subsequently investigated for associations with allergic rhinitis as well as skin prick test results. Haplotypes were estimated and compared in the two groups.</p> <p>Results</p> <p>Thirteen polymorphisms were identified in <it>S100A7</it>, of which 7 were previously undescribed. rs3014837 (G/C), which gives rise to an Asp → Glu amino acid shift, had significantly increased minor allele frequency in atopic individuals. The major haplotype, containing the major allele at all sites, was more common in non-atopic individuals, while the haplotype containing the minor allele at rs3014837 was equally more common among the atopic individuals. Additionally, heterozygotes at this site had significantly higher scores in skin prick tests for 9 out of 11 tested allergens, compared to homozygotes.</p> <p>Conclusion</p> <p>This is the first study describing genetic variation, associated with allergy, in <it>S100A7</it>. The results indicate that rs3014837 is linked to allergic rhinitis in our Swedish population and render S100A7 a strong candidate for further investigations regarding its role in allergic inflammation.</p

    Intranasal Administration of poly(I:C) and LPS in BALB/c Mice Induces Airway Hyperresponsiveness and Inflammation via Different Pathways

    Get PDF
    BACKGROUND: Bacterial and viral infections are known to promote airway hyperresponsiveness (AHR) in asthmatic patients. The mechanism behind this reaction is poorly understood, but pattern recognizing Toll-like receptors (TLRs) have recently been suggested to play a role. MATERIALS AND METHODS: To explore the relation between infection-induced airway inflammation and the development of AHR, poly(I:C) activating TLR3 and LPS triggering TLR4, were chosen to represent viral and bacterial induced interactions, respectively. Female BALB/c or MyD88-deficient C57BL/6 mice were treated intranasally with either poly(I:C), LPS or PBS (vehicle for the control group), once a day, during 4 consecutive days. RESULTS: When methacholine challenge was performed on day 5, BALB/c mice responded with an increase in airway resistance. The maximal resistance was higher in the poly(I:C) and LPS treated groups than among the controls, indicating development of AHR in response to repeated TLR activation. The proportion of lymphocytes in broncheoalveolar lavage fluid (BALF) increased after poly(I:C) treatment whereas LPS enhanced the amount of neutrophils. A similar cellular pattern was seen in lung tissue. Analysis of 21 inflammatory mediators in BALF revealed that the TLR response was receptor-specific. MyD88-deficient C57BL/6 mice responded to poly (I:C) with an influx of lymphocytes, whereas LPS caused no inflammation. CONCLUSION: In vivo activation of TLR3 and TLR4 in BALB/c mice both caused AHR in conjunction with a local inflammatory reaction. The AHR appeared to be identical regardless of which TLR that was activated, whereas the inflammation exhibited a receptor specific profile in terms of both recruited cells and inflammatory mediators. The inflammatory response caused by LPS appeared to be dependent on MyD88 pathway. Altogether the presented data indicate that the development of AHR and the induction of local inflammation might be the result of two parallel events, rather than one leading to another

    S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation

    Get PDF
    S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation

    Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases

    Get PDF
    Biomarkers of disease activity have come into wide use in the study of mechanisms of human disease and in clinical medicine to both diagnose and predict disease course; as well as to monitor response to therapeutic intervention. Here we review biomarkers of the involvement of mast cells, basophils, and eosinophils in human allergic inflammation. Included are surface markers of cell activation as well as specific products of these inflammatory cells that implicate specific cell types in the inflammatory process and are of possible value in clinical research as well as within decisions made in the practice of allergy-immunology

    A Portable, Parallel, Real-Time Animation-System for Turbulent Fluids

    No full text
    We describe our parallelization of an unconditionally stable solution scheme of the Navier-Stokes equation that has recentlybeen used for animation purposes. Our parallelization gives good speed-ups on current multi-processor workstations. These speed-ups close the gap that existed towards real time animation for several 3D-examples. In addition to parallelizing the solver software the integration of a fast 3D-volume renderer into the parallel framework has been an important step to achieve this goal. Our parallelization is portable on workstations and PC s running under the UNIX or the WIN32 operating systems
    corecore