5,122 research outputs found

    Seasonal Response of Workers of the Allegheny Mound Ant, \u3ci\u3eFormica Exsectoides\u3c/i\u3e (Hymenoptera: Formicidae) to Artificial Honeydews of Varying Nutritional Content

    Get PDF
    Field colonies of Allegheny mound ants, Formica exsectoides, were tested at monthly intervals throughout the summer to assess their preference for artificial honeydews containing varying compositions of sugars and amino acids. In choice tests, foragers significantly preferred high sugar honeydews early in the season, but shifted in mid-season to a strong preference for high amino acid honeydews. Late-season foragers slightly preferred sugars. When offered in equal concentrations, the honeydew sugar, melezitose, was consistently less attractive to foragers than sucrose. However both sugars were readily fed upon, and appeared to attract ants in an additive fashion. No single amino acid was significantly preferred; however the combination of asparagine, glutamine and serine was highly attractive during the mid-season sampling period. The seasonal switch in forager preference between sugars and amino acids coincides with an increase in the amount of actively growing brood

    Sex Ratio and Sexual Dimorphism in \u3ci\u3eFormica Exsectoides\u3c/i\u3e, the Allegheny Mound Ant (Hymenoptera: Formicidae)

    Get PDF
    We excavated 66 mounds from 6 populations of Formica exsectoides in Michigan jack pine, collecting sexual caste pupae for sex ratio estimates and measurement of dimorphism. Reproductive caste brood was present in only 37 ofthe 66 mounds, and presence of reproductive caste brood was associated with larger mound surface area. Females were heavier than males, but did not differ from males in energy density. Sexes did not differ in timing or rate of development. Sex ratio estimates based on individual mounds ranged from 1.0 (all male) to 0.08 (female·biased). Four of the six study populations were strongly male·biased, while sex ratio estimates for the remaining populations did not differ from equal investment. While this interpopulation variation may be caused by genetic factors, the equal investment populations were 10· cated in or near patches of clear·cut forest, suggesting that environmental impacts should be investigated

    Mode mixing in asymmetric double trench photonic crystal waveguides

    Full text link
    e investigate both experimentally and theoretically the waveguiding properties of a novel double trench waveguide where a conventional single-mode strip waveguide is embedded in a two dimensional photonic crystal (PhC) slab formed in silicon on insulator (SOI) wafers. We demonstrate that the bandwidth for relatively low-loss (50dB/cm) waveguiding is significantly expanded to 250nm covering almost all the photonic band gap owing to nearly linear dispersion of the TE-like waveguiding mode. The flat transmission spectrum however is interrupted by numerous narrow stop bands. We found that these stop bands can be attributed to anti-crossing between TE-like (positive parity) and TM-like (negative parity) modes. This effect is a direct result of the strong asymmetry of the waveguides that have an upper cladding of air and lower cladding of oxide. To our knowledge this is the first demonstration of the effects of cladding asymmetry on the transmission characteristics of the PhC slab waveguides.Comment: 7 pages, 6 figure

    Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    Get PDF
    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal, through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor
    corecore