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SEX RATIO AND SEXUAL DIMORPHISM IN FORMICA EXSECTOIDES, 

THE ALLEGHENY MOUND ANT (HYMENOPTERA: FORMICIDAE) 


H. C. Rowel, 2 and C. M. Bristowl 

ABSTRACT 

We excavated 66 mounds from 6 populations of Formica exsectoides in 
Michigan jack pine, collecting sexual caste pupae for sex ratio estimates and 
measurement of dimorphism. Reproductive caste brood was present in only 
37 ofthe 66 mounds, and presence of reproductive caste brood was associated 
with larger mound surface area. Females were heavier than males, but did 
not differ from males in energy density. Sexes did not differ in timing or rate 
of development. Sex ratio estimates based on individual mounds ranged from 
1.0 (all male) to 0.08 (female·biased). Four of the six study populations were 
strongly male·biased, while sex ratio estimates for the remaining populations 
did not differ from equal investment. While this interpopulation variation 
may be caused by genetic factors, the equal investment populations were 10· 
cated in or near patches of clear·cut forest, suggesting that environmental 
impacts should be investigated. 

The conspicuous nests ofFormica exsectoides Forel, the Allegheny mound 
ant, are a visual echo of its great ecological importance. Ranging from On· 
tario to Tennessee and northern Georgia, F. exsectoides form dense popula· 
tions along forest edges and in persistent grassy clearings (Creighton 1950). 
In the Great Lakes region, these ants are an important feature in jack pine 
forests (Bristow et al. 1992). While extensive descriptions of the physical 
structure, placement, and orientation of mounds exist (McCook 1877, An· 
drews 1926, Andrews 1929, Cory and Haviland 1938, Haviland 1948, Dim· 
mick 1951), information on the biology of the builders is more limited. 

High-density populations of F. exsectoides can dominate the jack pine 
(Pinus banksiana) landscape in northern and central Michigan. As both 
ground-level and arboreal predators and participants in mutualistic tending 
relationships with multiple groups of phloem-feeding homopterans, F. exsec­
toides may playa vital role in the structure and linkage of ground-dwelling 
and arboreal communities (Bishop 1998). 

F. exsectoides possesses an unusual suite of reproductive and behavioral 
traits. New colonies are founded through temporary social parasitism of 
Formica fusca L., in which F. exsectoides queens enter an established F. fusca 
colony and replace its queen (Wheeler 1933, Starr 1979). F. exsectoides 
colonies are polygynous (possessing multiple queens) (Bristow et al. 1992). 

1 Department of Entomology, Michigan State University, East Lansing, MI 48824. 
2 Current address: USDA·ARS, HCRL 2021 S. Peach Ave., Fresno, CA 93727. 
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Colonies may expand through nest budding; the departure of a queen or 
queens and a group of workers to establish a new mound (Franks and Holl­
dobler 1987). This process does not entail complete separation from the "par­
ent" mound, and thus creates colonies that are polydomous (occupying multi­
ple nests) (Oster and Wilson 1978). Finally, F. exsectoides colonies show an 
unusual lack of intercolony aggression. Greater knowledge of their reproduc­
tive biology is essential for understanding how these ants colonize and ex­
pand within habitats. 

Reproduction, and sex ratio in particular, is of great interest in the study 
of ants and other social Hymenoptera. Hymenoptera possess a haplo-diploid 
system of sex determination, which may lead to increased relatedness be­
tween diploid female offspring and decreased relatedness between female off­
spring and their haploid brothers. In Hymenoptera, sex ratio often varies 
from the equal investment predicted by Fisher (1939), and may be influenced 
by asymmetric relatedness among siblings, environmental factors, and ge­
netically and environmentally influenced variation in sexual dimorphism. 

The extent of sexual dimorphism in weight, energy content, and meta­
bolic costs affects sex ratio and is a key determinant of how investment 
should be estimated (Boomsma et al. 1995). Simply counting the number of 
males and the number of females produced by a colony will only reflect true 
investment if males require the same input as females. While weight is most 
commonly used as a surrogate measurement for investment, Boomsma 
(1989) found that this led to an overestimate of colony investment in females, 
by overlooking the higher respiration rate of males. Boomsma's proposed cor­
rection is now widely employed, but few studies investigate other possible 
differences between males and females, such as energy density, which might 
obscure true investment ratios. 

The abundance of variation in hymenopteran sexual investment has fos­
tered the growth and testing of a rich body of evolutionary theory concerning 
kin selection, parent- 'ng conflict and the evolution of sociality (Hamil­
ton 1964, Trivers and H 1976, Charnov 1982, Nonacs 1986, Crozier and 
Pamilo 1996). The unusual biology of F. exsectoides makes it potentially in­
formative to this theory (Oster and Wilson 1978, Starr 1979, Bourke and 
Franks 1995), but useful tests are impossible without prior information on 
reproductive biology and sex ratio. 

The purpose of this study is to describe sex ratio in F. exsectoides. This 
description necessarily includes measurement of sexual dimorphism in both 
weight and energy content, interpopulation variation in sex ratio and dimor­
phism, and potentially correlated colony characteristics such as mound size 
and spacing. These data are an essential foundation for further study of this 
species. While such data may be the basis for predictions in testing sex ratio 
theory, knowledge of F. exsectoides reproduction will also improve under­
standing of this ecologically complex ant species and be of broad use to re­
searchers interested in the biology and conservation of other members of the 
jack pine community. 

METHODS AND MATERIALS 

Site locations. Study sites were located in Oscoda, Crawford, and 
Roscommon counties, in the northern lower peninsula of Michigan. Because 
all sites were noncontiguous and located at least 1 km apart, we assumed 
discrete populations. Vegetation consisted predominantly of jack pine with 
interspersed red pine (Pinus resinosa), northern pin oak (Quercus ellip­
soidalis), and cherry (Prunus spp.). Understory vegetation consisted primar­
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ily of blueberry (Vaccinium angustifolium), sand cherry (Prunus pumila), 
bracken fern (Pteridum spp.) and grasses (Carex spp.). All sites were located 
in 50 to 70 year-old stands, with the exception of site 4, which had been re­
cently clear-cut. 

Brood collection and measurement. Partial excavations of 66 
mounds from 6 sites were performed from 18 July to 26 July 1996. For each 
mound, a comparative index of mound surface area (longest slope x shortest 
slope) and the distance to the nearest neighboring mound were recorded. 
Presence or absence of reproductive caste brood was determined by excavat­
ing the mound to approximately 0.5 m below ground level (or until reproduc­
tive caste pupae were found). Reproductive caste pupae are easily distin­
guished from worker pupae by size and coloration. 

Samples of 30-90 reproductive caste pupae were collected from mounds 
found to contain reproductive caste brood. Pupae were dried and weighed. 
Sex was determined visually after removing the pupal case. Some pupae had 
not developed enough for sex to be distinguishable by morphology; these 
were scored as "undeveloped" and excluded from further analysis. Stage of 
pupal development was scored from 0 (undeveloped) to 3 (fully developed, 
pigmented, ready to eclose). A few adults had partially emerged~these were 
given a score of 3.5. Analysis of covariance was used to analyze pupal dry 
weights, with sex as the primary analysis variable and stage of development 
as the covariate (PROC ANCOVA, SAS Systems Inc., 1990). 

Energy content. Caloric densities of pupae were measured using a 
semi-micro calorimeter (Parr Instrument Company, Moline, IL). Heat of com­
bustion in calories/g (He) was calculated by the equation: 

He =«B X tiT)- f2) X 1400» / sample weight 

where B is a caloric constant, calculated through calibration with benzoic 
acid, tiT is the change in temperature occurring during combustion, and (f1 ­
f2) X 1400 is a correction factor accounting for the amount of fuse wire used to 
ignite the sample. 

Since measurement accuracy declines sharply in samples below O.Olg 
weight (Parr 1991), 3-5 individuals of each sex were measured together. At 
least three samples from each site were analyzed to determine energy con­
tent of males; it was often not possible to analyze three (or any) samples of 
females, as fewer females were available. The data were analyzed using a 
nested analysis of variance in the following hierarchy: days (mounds (sex». 
The variable "days" accounts for variation in calorimeter performance during 
the analysis. 

Calculation of sex ratio. Sex ratio was estimated numerically (number 
of malesItotal number of pupae) and by dry weight (dry weight of malesI dry 
weight of total sample). As pupae within samples were usually of the same 
developmental stage, weights were not corrected for developmental stage. 
Numerical and weight-based sex ratio estimates were compared to each 
other using a paired t-test. As male ants have been shown to have higher res­
piration rates than females (MacKay 1985, Boomsma 1989), weight-based 
sex ratios were corrected for differences in metabolic rate using Boomsma's 
(1989) energetic cost ratio. These corrected ratios were compared between 
mounds and between sites using a nested analysis of variance. Boomsma-cor­
rected sex ratios were also correlated to mound surface area and distance to 
nearest neighbor using PROC CORR (SAS Systems Inc., 1990). 

3

Rowe and Bristow: Sex Ratio and Sexual Dimorphism in <i>Formica Exsectoides</i>, th

Published by ValpoScholar, 1999



210 THE GREAT LAKES ENTOMOLOGIST Vol. 32, No.3 

Table 1. Formica exsectoides sampling data and sex ratios, by site. n = total number of 
pupae collected, nr = number of pupae used to calculate sex ratios, Mn = numerical pro­
portion of males in total sample, Mw = proportion of male investment by dry weight, 
Mbw = Boomsma (1989) cost ratio. Boomsma cost ratio is generated by correcting dry 
weight ratios with Boomsma's (1989) energetic cost ratio: (weight males/weight 
total)O.7. 

Mounds 

Site Excavated Sampled n nr Mn Mw Mbw 

1 9 7 347 306 0.791 0.768 0.831 
2 13 8 389 336 0.902 0.882 0.916 
3 14 7 382 350 0.820 0.781 0.841 
4 5 2 66 64 0.453 0.384 0.512 
5 20 6 232 222 0.658 0.605 0.704 
6 5 3 114 98 0.959 0.952 0.966 

RESULTS 

Mound measurements and collection of brood. Reproductive pupae 
were only found in 37 of 66 partially excavated mounds. Of these 37, only 33 
mounds contained sufficient pupae (25-30) for sex ratio sampling. Table 1 
provides a summary of excavations, sampling, and sex ratios for each site. 
Sites 4 and 6 contained relatively few mounds. A total of 1530 pupae were 
collected. Twenty pupae were removed from the analyses due to damage that 
caused inaccuracy in weight measurements or uncertainty about sex. Of the 
remaining sample, 134 pupae had not developed sufficiently for sex to be 
morphologically distinguishable; these were classified as "undeveloped", and 
are subtracted from the total pupae sampled to provide the value nr (number 
of pupae for ratios) shown in Table 1. 

Mound surface area ranged from 0.9 m2 to 12.5 m2. Distance to nearest 
neighboring mound ranged from 1 m to 51 m. Only active/inhabited mounds 
were counted as "neighbors". The mean surface area index for mounds found 
to produce sexual brood was marginally greater than that for mounds that 
produced only worker brood (F = 3.84, dfe = 46, p = 0.0560), but this relation­
ship was variable among sites (Figure 1). Distance from nearest neighboring 
mound did not appear to be associated with production of sexual brood (F = 
0.03, dfe = 46, p = 0.8662) (Figure 2). 

Weight and development. Females were heavier than males (F = 160, 
dfe = 1353, p < 0.0001). The mean female weight (least squares mean, cor­
rected for developmental stage using ANCOVA) across all sites was 0.0101 
(stderr = 0.00007; n = 276). The mean male weight across sites was 0.0081 
(stderr = 0.00004; n = 1100). 

While significant differences in pupal weights of both sexes existed 
among sites, variation in weights was also found among mounds within sites. 
Male and female pupal dry weights are shown in Figure 3. 

Some of this weight variation was linked to variation in stage of pupal 
development. Significant negative regression relationships existed between 
development stage and pupal dry weight for both sexes (Figure 3). The re­
gression slopes were similar between sexes, but development stage explained 
less variation in male weight (r2 =0.1787) than in females (r2 =0.2934), due 
to the presence of outliers in the male weight data. Mean stage of pupal de­
velopment was not different among mounds or among sites. 
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Figure 1. Comparative surface area measurements (m2) for Formica exsec­
toides mounds with and without reproductive caste brood. Comparative sur­
face area was measured as (longest slope of the mound surface) x (shortest 
slope of the mound surface). Sampling data is reported in Table 1. Error bars 
represent one standard deviation. 

Energy Content. There was no significant difference between energy 
density (corrected He) of male and female pupae ( F = 0.35, dfe = 74, P = 
0.5576) (Figure 4). The least-squares means of energy density for males was 
5526.2 cal/g, and for females 5507.9 cal/g. The overall nested ANOVA model: 
Hc day (site (sex» was not significant at p =0.5001 (F =0.88, df~ =74). As 
pupae could not be combusted individually, it was impossible to test for dif~ 
ferences in caloric density among stages of development. 

Sex Ratios. As males and females were not different in energy content, 
caloric content data could not be used to estimate sex ratio. Numerical and 
dry-weight estimates of sex ratio were statistically different (t =5.64997, df = 
32, p = 0.0001). Due to the differences between male and female weights, 
using numbers of individuals to estimate sex ratio overestimated investment 
in males by an average of 2.8% compared to estimates based on weights. 
Whether this difference would be meaningful in a larger context depends 
largely on the precision of theoretical predictions tested. Applying Boomsma's 
(1989) correction increases the male bias to a greater extent than using the 
original numerical investment ratio. As sex ratio estimates based on dry 
weights seem more accurate in determining investment, and the Boomsma 
correction is accepted by convention, Boomsma-corrected weight ratios are 
discussed in the remainder of this article. 

Sex ratios were predominantly male-biased, but ranged from all-male 
(1.0) to almost an-female (0.08). Although considerable variation in sex ratio 
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Figure 2. Average distance (m) to nearest neighboring mound for F. exsec­
toides mounds with and without reproductive caste brood. 'The number of 
mounds sampled at each site is reported in Table 1. Error bars represent one 
standard deviation. 

was present within sites, polydomy of F. exsectoides colonies makes mound to 
mound comparisons questionable without further genetic information. Thus 
sex ratio estimates from all mounds within a site are treated as samples of a 
single population, and only comparisons between population averages were 
performed. Population mean numerical and weight-based sex ratios are 
shown in Table 1. 

Analysis of variance showed differences in sex ratio among sites (F = 3.1, 
df~ 27, p = 0.0245) (Figure 5). Sites fell into two categories: male-biased 
(sites 1, 2, 3, & 6), and sites with sex ratios not differing from 50/50 or equal 
investment (sites 4 & 5). Sites 4 and 5 contained male-biased mounds, but 
these were balanced by female-biased mounds. 

DISCUSSION 

Mound measurements and collection of brood. The relatively low 
percentage of F. exsectoides mounds containing reproductive brood may be 
explained in the context of a polydomous colony-one or a few mounds within 
the colony may contain all of the colony's sexual offspring. The environment 
in some mounds might be better suited for production (or pupation) of sexual 
offspring. Gain in efficiency of brood care might arise from clustering sexual 
brood in a few mounds, rather than scattering it among many. Alternatively, 
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Figure 3. Dry weight (g) of male and female F. exsectoides sexual caste pupae. 
Developmental stages are based on pigmentation, sclerotization, and defini­
tion of adult features. These stages range from 0 (still larval, unable to deter­
mine sex by morphology) to 3.5 (partially emerged from cocoon). Regression 
slopes shown were significant at p < 0.0001. 

a lack of production of sexual forms may reflect allocation to asexual colony 
expansion (budding). Budding should be a more successful method of expan­
sion within habitats, since it does not depend on availability of F. fusca host 
nests. Alate sexual forms are usually vulnerable to predation during disper­
sal (Holldobler and Wilson 1990), and may be an unnecessary investment in 
stable habitats. 

While mound surface area is not a good surrogate for direct measures of 
worker population (Cory and Haviland 1938), or even mound volume (Bris­
tow et aL 1992), the measurement has some value in comparisons between 
established mounds and newly-formed buds. As mound size increases over 
time (Andrews 1926, Haviland 1948), the tendency for mounds producing 
sexual brood to be larger in surface dimensions than mounds producing only 
workers may reflect differences in colony maturity (Figure 1). Measurements 
of distance to the nearest neighboring mound may be expected to reflect 
crowding, local competition for resources, and frequency of budding, all fac­
tors of potential influence on reproductive allocation within a mound. Cur­
rent data do not show an effect of neighbor distance on reproduction (Figure 
2). 

Weight and development. Differences in pupal development within 
and between mounds may arise from environmental factors (mound tempera­
ture, placement of pupae within mound), colony factors (time of egg-laying, 
maternal effects, nutrition), or genetic factors influencing development time. 
The data obtained in this study give no indication that males and females 
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differ in development rates or emergence times (Figure 3). While sex of "un­
developed" pupae cannot be determined (inviting conjecture that differences 
in development time may obscure the true sex ratio), relatively equivalent 
proportions of males and females at each developmental stage lends support 
to the contention that "undeveloped" pupae represent a random assortment 
of males and females. 

Weight data indicated significant dimorphism between males and fe­
males, but the difference between sexes was small relative to that shown by 
many ant species (Boomsma 1989, Crozier and Pamilo 1996). This is consis­
tent with the founding biology of F. exsectoides-species with dependent 
(non-claustral) founding tactics, such as budding and social parasitism, re­
quire less investment per female. Founding biology also explains the lack of 
difference in male and female energy density, as females do not require large 
fat reserves for founding new colonies. 

The sexual dimorphism in weight was partially masked by the presence 
of male weight outliers. These were usually males that were as heavy or 
heavier than females. These males were often also outliers with respect to 
appearance, possessing disproportionately large heads. The presence of these 
"heavy" males might indicate a dispersal polymorphism such as that de­
scribed by Fortelius et al. (1987) and Agosti and Hauschteck-Jungen (1987) 
in Formica exsecta L., in which small males dispersed while larger males 
mated in the vicinity of the nest. The low frequency of these males among F. 
exsectoides sampled argues against that explanation. Alternatively, these 
males could be diploid. Nipson's (1978) study, as well as the colony structure 
and mating behavior of F exsectoides, suggests that significant inbreeding 
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Figure 5. Sex ratio of F. exsectoides populations, based on dry weight mea­
surements of sexual caste brood. Boomsma's (1989) correction for metabolic 
costs has been used. Each value represents the mean of mounds sampled 
from that site; sampling data are provided in Table 1. Error bars represent 
one standard deviation. Letters 'a' and 'b' are used to indicate statistically 
significant differences between populations. 

may occur within populations. Inbreeding may lead to the production of 
diploid individuals homozygous at sex-determining loci-intended females 
who are morphologically male and reproductively dysfunctional (Crozier 
1971, Pamilo et al. 1994). The presence of diploid males as a significant frac­
tion of the reproductive brood produced would lead to overestimation of male 
investment, and should be investigated in the futute. 

Sex Ratio. The strong male bias in sex ratio displayed by F. exsectoides 
is surprising, as relatedness asymmetries in eusocial Hymenoptera are ex­
pected to result in worker preference for a female bias (Trivers and Hare 
1976). The male bias observed is consistent with observed sex ratios for other 
ant species that display colony expansion through budding (Bourke and 
Franks 1995, Pamilo and Rosengren 1983). Unfortunately, budding is associ­
ated with a suite of characteristics, such as polygyny and polydomy that may 
equally influence sex ratio (Boomsma 1993). The extent of any or all of the 
above traits may be related to genetic, social, or environmental factors. 

Our observation that sites located within (site 4) or near (site 5) recently 
clear-cut forests had sex ratios not different from 50/50, while all other sites 
had strongly male-biased sex ratios (Figure 5) suggests an environmental in­
fluence. Two environmental factors with strong potential effects on female in­
vestment are food and availability of nest sites. Food availability may con­
tribute directly to sex ratio, either through developmental effects (lack of 
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food results in fewer sexuals, more workers (Deslippe and Savolianen 1995, 
Herbers and Banschbach 1998)) or by influencing reproductive allocation. 
The theory of local resource competition (Clark 1978) states that, in a re­
source and' sal-limited environment, male production will be favored 
since female will compete directly with the mother for resources. 
While this theory is not consistent with observations in this study (clear-cut 
areas may be expected to have reduced food resources), it is possible that dif­
ferences in sex ratio among sites represent population-level strategies for 
coping with ecological conditions. The effect of environment on sex ratio may 
also be indirect. Herbers (1986, 1993) discusses the impact of ecological fac­
tors on queen number, which may affect sex ratio by altering the relatedness 
structure of the colony. Detailed comparisons between populations along a 
gradient of environmental conditions would be necessary to determine the 
existence of these strategies and the factors regulating them. 

Understanding patterns of reproduction in F exsectoides is an essential 
preliminary to understanding the population dynamics of this species and 
how those dynamics shape its relationship to the surrounding community. 
Factors that make sex ratio studies of Formica exsectoides difficult, such as 
polydomy, social parasitism, and specialization on transient habitats, in­
crease the need to perform such studies, since understanding sex ratio and 
reproductive dynamics in only discrete, monogynous laboratory colonies 
gives an incomplete picture of the interaction of genetic and environmental 
factors in shaping reproductive strategy. Before integrating sex ratio studies 
in large-scale evolutionary analyses, researchers must understand the extent 
of variation present. This study indicates that intraspecific variation in sex 
ratio exists in F exsectoides, whether due to environmental or genetic influ­
ences. As significant variation in sex ratio occurred between sites within a 
specific habitat (jack pine), whole species generalizations of sex ratio based 
on one or two studies will surely misrepresent true sex ratio dynamics of 
many ant species. 
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