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Bi-harmonic cantilever design for improved measurement sensitivity
in tapping-mode atomic force microscopy

Muthukumaran Loganathan and Douglas A. Bristowa)

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla,
Missouri 65401, USA

(Received 21 February 2014; accepted 20 March 2014; published online 10 April 2014)

This paper presents a method and cantilever design for improving the mechanical measurement sen-
sitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the
drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that
the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the
sample topography than the standard single-harmonic trajectory typically used. Although standard
AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the
second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode
at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small
forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior
of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for
standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30%
improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through
bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds
and low force fields. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870409]

I. INTRODUCTION

Conventional tapping-mode atomic force microscopy
(AFM)1 involves exciting the micro cantilever probe near its
resonant frequency so that the sharp tip at the end of the can-
tilever taps intermittently on the surface of interest. Changes
in the sample height cause a change in the tapping ampli-
tude and/or phase. A feedback control loop monitoring the
amplitude raises (or lowers) the sample in order to maintain
constant amplitude and phase. The distance that the sample
is raised (or lowered) corresponds to the change in sample
height and is used to generate the sample image.

The quality of the AFM image is a combination of a
number of factors that affect the signal-to-noise ratio (SNR).
When precise measurements are needed, or in challenging
scenarios such as high-speed AFM2, 3 and non-contact tapping
AFM,4–6 high SNR is critically important. Efforts to improve
SNR have focused on the optical lever7, 8 and the electronics,
particularly the sampling rate and algorithms used in the feed-
back loop.9, 10 Thermal noise in the cantilever can be reduced
by using smaller cantilevers and in some cases a larger optical
spot size.11

The harmonic motion of the cantilever has also been the
focus of a great deal of study. Though the steady state tapping
trajectory is predominantly sinusoidal with the same funda-
mental frequency as the driving signal, it also contains higher
harmonic components 12–14 due to the nonlinear tip-sample
interaction. The higher harmonics can be correlated to sur-
face inhomogeneities15–17 and electrostatic forces.18, 19 Alter-
natively, significant compositional sensitivity can be achieved
by driving the cantilever with multi-frequency signals.

a)Author to whom any correspondence should be addressed. Electronic mail:
dbristow@mst.edu

Garcia et al. proposed a method to obtain compositional maps
by exciting the first two modes of the cantilever 20–22 and mon-
itoring the phase of the second eigenmode. Another proposed
approach23 is to design new cantilevers whose eigenmodes
coincide with the higher harmonics. These designs amplify
the signal-to-noise ratio in order to measure sample viscoelas-
ticity and adhesion.

Although cantilever harmonic motion has been well stud-
ied, it has only recently been considered for its effect on mea-
surement sensitivity. In previous work by the authors,24 it was
observed that certain multi-frequency drive signals could im-
prove the measurement sensitivity. Certain shapes, such as the
broad valley, bi-harmonic trajectory demonstrated a 20% im-
provement in measurement sensitivity in experiments. In this
article, we build on these results by presenting a theory for
AFM trajectory shaping and a new cantilever profile that is
designed to amplify the trajectory shaping effect. In Sec. II we
present the theoretical development of tip trajectory shaping.
Section III discusses mathematical modeling, design, and fab-
rication of bi-harmonic cantilevers. Experimental results ex-
hibiting improved measurement sensitivity, and sharper sur-
face images obtained for several imaging scenarios are pre-
sented in Sec. IV. This is followed by conclusions in Sec. V.

II. TRAJECTORY SHAPING

AFM probes in tapping mode are known to have a dom-
inantly sinusoidal response across the entire approach-retract
range.25 However, it is possible to introduce additional har-
monics into the trajectory of the probe by injecting additional
harmonics (with very large amplitude) into the tapping piezo
drive signal. We refer to this process as trajectory shaping and
find that shaped trajectories undergo significant shape change
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FIG. 1. Simple cantilever model driven by base excitation.

across the approach-retract range. The theory behind trajec-
tory shaping is shown first and then used to shape trajecto-
ries that can be used for significantly improving measurement
sensitivity.

A. Trajectory shaping theory

Consider the single-mode model of a base-excited can-
tilever probe shown in Figure 1,

mẍ(t) + cẋ(t) + kx(t) = kz(t) + fts(x(t)), (1)

where x is the position of the cantilever end, z is the posi-
tion of the base, fts is the tip-to-sample force, and m, c, k are
the effective mass, damping coefficient, and stiffness of the
cantilever, respectively. To simplify the analysis, consider the
time scaling τ = ω1t, where ω1 = √

k/m is the cantilever res-
onant frequency. Then (1) can be rewritten as

ẍ(τ ) + 1

Q
ẋ(τ ) + x(τ ) = z(τ ) + 1

k
fts(x(τ )), (2)

where Q = √
km/c is the Q-factor.

Consider now that the base is excited with the bi-
harmonic drive signal,

z(τ ) = a1 cos(τ + θ1) + a2 cos(2τ + θ2), (3)

and make the following assumptions:

A1) The cantilever is in a stable, periodic solution and
makes contact with the sample once per period.

A2) The cantilever is tapping in air or a vacuum, and thus
Q � 1.

A3) The tip-to-sample force occurs quickly, over a small
portion of the period (i.e., hard-contact tapping mode).

Following (A2), it is reasonable to model the tip-to-
sample force as an impulse train,

fts(x(τ )) ≈ f0

∑
i

δ(τ − 2πi + θ0), (4)

where f0 is the force magnitude and θ0 is the phase of the tip-
to-sample contact, which logically occurs at the lowest point
of the probe trajectory, or,

θ0 = arg min
0≤θ<2π

x(θ ). (5)

Using the Fourier description of the tip-to-sample force, (4),

fts(x) ≈ 1

2π
+ f0

π
cos(τ + θ0) + f0

π
cos(2(τ + θ0))

+f0

π
cos(3(τ + θ0)) + · · · . (6)

Noting that the large Q-factor (assumption A2) ensures
that the first harmonic of the cantilever response will be
much larger than the response to the higher harmonics, it
is reasonable to neglect the higher harmonics, and thus (2)
can be approximated as the linear system forced by two
harmonics,

ẍ(τ ) + 1

Q
ẋ(τ ) + x(τ ) = a1 cos(τ + θ1) + a2 cos(2τ + θ2)

+ 1

πk
f0 cos(τ + θ0). (7)

The solution to (7) takes the form

x(τ ) = x1(τ ) + x2(τ )

= A1 cos(τ + φ1) + A2 cos(2τ + φ2), (8)

where xi(τ ) is the ith harmonic component of x(τ ) and A1, A2,
φ1, φ2 are parameters to be solved for. Substituting (8) into
(7) yields

A1e
jφ1 = Qe

j
π
2

(
a1e

jθ1 + f0

πk
ejθ0

)
, (9)

A2e
jφ2 = a2Qejθ2

2e
j

π
2 − 3Q

, (10)

and from (5),

θ0 = arg min
0≤θ<2π

A1 cos(θ + φ1) + A2 cos(2θ + φ2). (11)

Thus, the trajectory shape can be obtained by simultaneously
solving (8)–(11).

B. A broad-valley trajectory for improved
measurement sensitivity

In Ref. 24 a so-called “broad-valley” trajectory was gen-
erated by selecting the first harmonic of the drive signal,
a1, to give the desired free-response amplitude, and then
selecting,

θ1 = π
2 , θ2 = π and 0 < a2 < 0.75Qa1, (12)

where larger values of a2 give a wider valley to the trajec-
tory. This particular trajectory shape demonstrated as much
as 20% improvement in measurement sensitivity, though the
mechanism behind the improvement was not well under-
stood. The analysis in Sec. II A is used here to clarify that
mechanism.

Figure 2 shows snapshots of single-harmonic and broad-
valley bi-harmonic trajectories obtained from (8) to (11) at
several points along the approach to the sample. The can-
tilever parameters k = 15 nN/nm, Q = 300 were chosen for
the analysis. The first harmonic drive amplitude a1 was cho-
sen in such a way that the tip trajectory has free amplitude,
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FIG. 2. Single-harmonic (A2 = 0) and bi-harmonic (A2/A01 = 0.25) trajectories at several different standoff distances from the sample obtained from the
analytical model (8)-(11). Frames (a)–(d) are single-harmonic trajectories and (e)–(h) are bi-harmonic trajectories. Comparing (c),(d) to (g),(h), the bi-harmonic
amplitude reduces more than the single-harmonic amplitude.

A01 = 1. The second harmonic drive amplitude was set to
a2 = 0.75Qa1 which resulted in trajectory amplitude ratio
A2/A01 = 0.25. Several interesting features can be observed in
Figure 2. First, the second harmonic remains invariant to the
tip-to-sample distance, which can also be seen mathemati-
cally from (10), where A2 and φ2 are independent of f0. Thus,
only the first mode responds to contact with the sample. Sec-
ond, while both single-harmonic and bi-harmonic trajecto-
ries have the same peak-to-peak free-response amplitude of
2, the lowest point on the broad-valley trajectory is closer
to the nominal position of 0. Therefore, the sample is much
closer to the nominal position before the bi-harmonic trajec-
tory first makes contact. Contact for the single-harmonic re-
sponse is made in frame (b) of Figure 2, but contact for the
bi-harmonic is not made until frame (g). Consequently, while
the amplitude of the single-harmonic response reduces grad-
ually from frame (b) to frame (d), the bi-harmonic amplitude
reduces dramatically from frame (g) to (h), thereby increasing
the measurement sensitivity of the probe. Figure 3 shows the
approach-retract curve predicted by (8)–(11) compared to the
curve obtained from the numerical differential equation solu-
tions of (1) (using the Lennard-Jones model given in Ref. 26
to model the tip-to-sample interaction force, fts).

III. BI-HARMONIC CANTILEVER DESIGN

A drawback of the bi-harmonic trajectory shaping de-
sign in (3) is that the piezo base-motion is approximately Q
times larger at the 2nd harmonic than it is for the 1st har-
monic. Because Q is typically very large, the piezo can satu-
rate when trying to drive the 2nd harmonic. Here, a design is
presented for a cantilever capable of generating bi-harmonic
motion without large base motion at the 2nd harmonic. This is
achieved by altering the geometry of the cantilever so that the

2nd eigenmode occurs at approximately twice the frequency
of the 1st eigenmode.

A. Bi-harmonic trajectories for a bi-harmonic
cantilever

Consider now the dynamics of the first two eigenmodes
of a cantilever and assume that the resonant frequency of the
2nd eigenmode is exactly twice that of the 1st eigenmode.

FIG. 3. RMS vs. tip sample offset (xs) obtained through analytical frame-
work and numerical simulation for single harmonic (A2 = 0) and bi-harmonic
(A2/A01 = 0.2) trajectories. Numerical simulations show the well-known hys-
teretic loop that switches between hard-tapping and soft-tapping solutions.
The analytical model matches the numerical simulation well throughout the
hard-tapping portion of the approach-retract curve.
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Then,

ẍ1(τ ) + 1

Q1
ẋ1(τ ) + x1(τ ) = z(τ ) + 1

k1
fts(x)

ẍ2(τ ) + 2

Q2
ẋ2(τ ) + 4x2(τ ) = z(τ ) + 1

k2
fts(x) (13)

x(τ ) = x1(τ ) + x2(τ ),

where x1 and x2 are the position components, Q1 and Q2 are
the quality factor, and k1 and k2 are the stiffness of the first
two eigenmodes, respectively. Consider, again, the Fourier
description of the tip-to-sample force (6) and also the bi-
harmonic base motion, (3), but now assume that the base-
motion is small for each harmonic, that is, a1 and a2 are small.
Then, (13) can be reasonably approximated as

ẍ1(τ ) + 1

Q1
ẋ1(τ ) + x1(τ )

= a1 cos(τ + θ1) + 1

πk1
f0 cos(τ + θ0)

ẍ2(τ ) + 2

Q2
ẋ2(τ ) + 4x2(τ )

= a2 cos(2τ + θ2) + 1

πk2
f0 cos(2τ + θ0) (14)

x(τ ) = x1(τ ) + x2(τ ).

Clearly, if the cantilever achieves a stable periodic solution,
then the eigenmode trajectories take the form

x1(τ ) = A1 cos(τ + φ1)
x2(τ ) = A2 cos(2τ + φ2).

(15)

However, the trajectory solutions are significantly more com-
plicated than in the single-eigenmode analysis of Sec. II be-
cause both mode trajectories are dependent on f0 and θ0. How-
ever, it is possible to simplify the solution and dynamic be-
havior if the 2nd mode is significantly more stiff than the 1st
mode, or k2 � k1. If k2 � k1, then it is possible to approxi-
mate (14) as

ẍ1(τ ) + 1

Q1
ẋ1(τ ) + x1(τ )

= a1 cos(τ + θ1) + 1

πk1
f0 cos(τ + θ0)

ẍ2(τ ) + 2

Q2
ẋ2(τ ) + 4x2(τ ) = a2 cos(2τ + θ2) (16)

x(τ ) = x1(τ ) + x2(τ ),

from which the stable periodic solution can be obtained as the
solution to

A1e
jφ1 = Q1e

j
π
2

(
a1e

jθ1 + f0

πk1
ejθ0

)
, (17)

A2e
jφ2 = 1

4a2Q2e
jθ2 , (18)

θ0 = arg min
0≤θ<2π

A1 cos(θ + φ1) + A2 cos(2θ + φ2). (19)

Thus, the trajectory shaping for the bi-harmonic cantilever
retains the essential features already developed for single-
harmonic cantilevers. Namely, the first mode trajectory for
the bi-harmonic cantilever, (17), has the same dependence as
in the single-harmonic case, (9). Also, the second mode tra-
jectory, (18), is independent of f0, as in the single-harmonic
case, (10). However, the significant difference is that a2 is
now similarly scaled to that of a1 because of the Q2 that ap-
pears in (18). Thus, the base excitation for the second har-
monic is on the order of that used in the first harmonic. It re-
mains to design a cantilever that meets the above assumptions.
Specifically, the second mode frequency should be twice that
of the first mode frequency and the second mode should
be significantly stiffer than the first mode. The broad-valley
bi-harmonic trajectory can be generated as long as A2/A01

< 0.25. The drive parameters to obtain broad valley trajec-
tory can be selected as

θ1, θ2 = π

2
, and 0 < a2 < Q1

/
Q2

a1. (20)

B. A bi-harmonic cantilever

For nominal rectangular cantilevers the second resonant
frequency is normally greater than twice its first resonant fre-
quency (F2 � 2F1). Hence, in order to match the second res-
onant mode to the second harmonic, the cantilever has to be
modified suitably. Resonant frequencies of rectangular can-
tilever can be varied by selectively removing material from
high stress location corresponding to that mode.27, 28 This re-
duces the effective spring constant of that mode, which in turn
reduces the frequency of the mode.

The proposed cantilever, whose dimensions are shown
in Figure 4(a), has a similar design to Ref. 28. In the can-
tilever, an inner beam oscillates inside of the larger, original
beam. The large inertia of the inner beam significantly low-
ers the 2nd bending mode frequency. The 2nd bending mode
is also significantly stiffer than the 1st bending mode due to
the higher order bending. A finite-element-analysis (FEA) of
the beam design is performed and shown in Figure 4(b). The
cantilever dimensions are selected to match that of a com-
mercial silicon cantilever (TESP) manufactured by BRUKER
(125 μm long, 40 μm wide, and 4 μm thick, 1st mode fre-
quency of 350 kHz with stiffness of 42 nN/nm). Using an
iterative process, the inner beam dimensions are adjusted in
FEA software until the 2nd mode frequency was reduced to
twice that of the 1st mode. The final dimensions of the inner
beam which resulted in such a property are effective length
(Leff) of 84 μm and width of 16 μm. The 1st mode frequency
was reduced from 350 kHz to 200 kHz, while the 2nd mode
frequency was reduced from 2300 kHz to 400 kHz. The 1st
mode stiffness was reduced from 42 nN/nm to 15 nN/nm and
the 2nd mode stiffness after modification is 1355.2 nN/nm
(significantly higher than the 1st mode stiffness). Following
a similar procedure, it is possible to design a bi-harmonic
cantilever from other standard single-beam AFM cantilever
probes.
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FIG. 4. (a) Bi-harmonic cantilever (b) first and second resonant mode shape of the cantilever with a fixed base and free end (tip). The resonant frequencies are
200 kHz and 400 kHz, respectively.

C. Bi-harmonic cantilever fabrication

The bi-harmonic cantilever is fabricated by milling out
the inner cantilever on a BRUKER (TESP) commercial
tapping-mode cantilever using an FEI Helios NanoLab 600
focused ion beam (FIB). An image of the fabricated beam is
shown in Figure 5(a). Because of uncertainties in cantilever
material properties and fabrication errors, the 2nd mode res-
onant frequency of the fabricated cantilever was typically not
precisely twice that of the 1st mode resonant frequency. In
these cases the resonant frequency was corrected by remov-
ing additional material, marked A and B in Figure 5(b). Ma-
terial A was removed when the 2nd resonant mode frequency
was too low, thereby shortening the inner beam and increas-
ing its frequency. Material B was removed when the 2nd mode
frequency is too high, thereby extending the length of the in-
ner beam and reducing its frequency. The authors found that
typically one or two iterations are sufficient to achieve the
desired frequency ratio. The frequency response of a typical
bi-harmonic cantilever is shown in Figure 6.

FIG. 6. Frequency response (input = base motion) of the normal (unmodi-
fied) cantilever and modified bi-harmonic cantilever shown in Figure 5.

FIG. 5. (a) SEM image of bi-harmonic cantilever fabricated using Focused Ion Beam (FIB). (b) Top view of the cantilever showing dimensions that can be
altered (L1, L2) to tune the 2nd mode of the cantilever.
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FIG. 7. Schematic of experimental AFM setup.

IV. EXPERIMENTAL RESULTS

Experiments were performed on a Veeco Multi-Mode
scanning probe microscope with a cobalt test sample from Ted
Pella, Inc. The default sinusoidal drive signal was replaced by
bi-harmonic drive signal generated by a National Instruments
digital function generator as in Figure 7. The bi-harmonic tra-
jectory was shaped in free-response, before engaging the can-
tilever with the sample.

While, in theory, a broad-valley trajectory is generated
with the parameters given in (20), in practice, variations in
the cantilever and laser alignment require some tuning of the
parameters. The tuning procedure, illustrated in Figure 8, is
as follows:

(1) Adjust the first-harmonic drive amplitude, a1, to obtain
the desired free-response amplitude (A01).

(2) Set θ1, θ2, as in (20) and increase a2 until the 2nd har-
monic is visible in the free-response trajectory

(3) Tune θ2 to align the 2nd harmonic so that it widens the
trajectory at the lowest point.

(4) Increase a2 to widen the valley to the desired degree. If
two minimum points appear, reduce a2.

FIG. 8. Broad valley trajectory tuning procedure. (a) Step 1: 1st mode drive
amplitude a1 is chosen to give a desired free response amplitude, e.g., A01
= 20 nm (b) Step 2: Ideal θ1, θ2, and a2 are selected as in (20). (c) Step 3:
θ2 is adjusted to obtain a broad valley trajectory. (d) Step 4: a2 is increased.
If a2 is increased too far, two minimum points appear on the trajectory.

FIG. 9. Experimental RMS vs. tip sample offset curves of bi-harmonic can-
tilevers corresponding to single harmonic (A2/A01 = 0) and bi-harmonic
(A2/A01 = 0.2) trajectory. Inset shows the approach and retract direction. The
bi-harmonic curve has a higher slope, and thus a higher sensitivity.

It may help to use a FFT analysis of the measured trajec-
tory to help in the tuning process. For a broad-valley trajectory
the desired relationships between the 1st and 2nd harmonic
parameters are

φ2 = 2φ1 and 0 < A2/A01 < 0.25. (21)

A. Approach-retract curve validation

An experiment was setup such that the sample ap-
proaches and retracts from the tip at a constant rate of
2000 nm/s, and the RMS (volts) value of the reflected laser
signal from the photo detector was recorded. Figure 9 shows
the experimental approach-retract curves of the bi-harmonic
cantilever with free RMS amplitude of 115 nm and amplitude
ratio, A2/A01 = 0 and 0.2. As the tip offset is reduced, the
amplitude reduces and the probe enters into a bi-stable region
where two stable solution states exist. These are referred to as
attractive and repulsive solutions and are characterized by a
hysteric loop. As the tip offset is further reduced, the repulsive
solution becomes predominant and a linear relationship be-
tween the cantilever amplitude and tip offset can be observed.
The experimental sensitivity was calculated by measuring the
slope of this linear region (60 ≤ xs ≤ 100 nm) of the experi-
mental data. The sensitivity improvement compared to single
harmonic tapping is approximately 33%.

In another experiment, the frequency response of the bi-
harmonic cantilever was measured by injecting sine waves
into the Z piezo control channel and measuring the frequency
response of the cantilever RMS. The response of the bi-
harmonic cantilever is shown in Figure 10 for both the sin-
gle harmonic trajectory and bi-harmonic trajectory. As can be
seen, the bi-harmonic trajectory results in an increased magni-
tude, or measurement sensitivity, across the entire bandwidth
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FIG. 10. Experimental frequency response of RMS vs. sinusoidally vary-
ing Z piezo position for bi-harmonic cantilevers corresponding to single
harmonic (A2/A01 = 0) and bi-harmonic (A2/A01 = 0.2) trajectory. The bi-
harmonic trajectory has a higher sensitivity (shown by a larger magnitude)
across the entire range of frequencies before the high frequency rolloff.

of the cantilever. At low frequencies the increased sensitivity
is 1.66 dB, or 21% and at higher frequencies the sensitivity is
5.42 dB, or 87% larger.

Secs. IV B–IV D, we examine the quality of im-
ages obtained using the bi-harmonic broad-valley trajectory
and compare with those obtained from a standard single-
harmonic trajectory. The increased measurement sensitivity
of the bi-harmonic method produces a larger signal for sim-
ilarly sized changes in the sample height, resulting in a
more aggressive correction by the feedback controller, and
thus reducing image error. The broad-frequency improve-
ment reduces imaging errors across the entire frequency range
of the cantilever bandwidth. Several imaging scenarios are
considered.

1. Case I: Low-speed imaging in the hard-tapping
region

In low-speed imaging, the majority of the image content
is located in low frequencies, where errors are small and be-
low the noise floor. The noise floor will mask any difference
between single-harmonic and bi-harmonic methods in the low
frequency region. However, a small portion of the image con-
tent may appear at higher frequencies, above the noise floor.
In this case, the higher sensitivity of the bi-harmonic method
will track these frequencies better, but may not be visually
apparent if the image is dominantly in the low-frequency
region.

2. Case II: Higher-speed imaging in the hard-tapping
region

By scanning at higher speeds, a larger portion of the im-
age content will move into the higher-frequency region where

the tracking errors dominate measurement noise. Both single-
harmonic and bi-harmonic methods will appear degraded and
blurry compared to their lower speed counterparts. However,
the higher sensitivity of the bi-harmonic method will result in
lower degradation.

3. Case III: Low-speed imaging in the soft-tapping
region

The soft-tapping region is not typically used for imag-
ing because of the hysteretic loop (Figure 9) that coincides
with this region. However, when imaging fragile samples, the
soft-tapping region is sometimes necessary. The measurement
sensitivity in the soft-tapping region is much less than in the
hard-tapping region (as evidenced by the lower slopes of the
approach-retract curves), resulting in large image errors above
the noise level, even at low speeds. While the quality of the
images will be lower in soft-tapping than in hard-tapping for
both single-harmonic and bi-harmonic methods, the higher
sensitivity of the bi-harmonic trajectory will provide a clearer
image.

B. Case I: Low-speed imaging in hard-tapping region

A bi-harmonic cantilever was used for imaging a cobalt
sample with free RMS amplitude of 115 nm and set point am-
plitude of about 85 nm. The sample was scanned at 1 Hz over
an area of 1 × 1 μm. The proportional and integral gains for
the controller were set to 0.85 and 0.7, respectively. From
Figure 9 it is clear that 85 nm RMS amplitude set point
is in the hard tapping region, below the hysteretic loop
region, which is the typical region for imaging. As dis-
cussed above, the difference between single-harmonic and bi-
harmonic methods in low-speed imaging in the hard-tapping
region will not be easily perceptible in the image because
most of the tracking error is below the noise floor. This can be
seen in Figure 11(a) where the tapping trajectory was changed
from single to bi-harmonic (A2/A01 = 0.2) half way through
the scan while the controller gains were kept constant. How-
ever, it is possible to detect that the tracking performance (and
thus image quality) is better at higher frequencies using the
bi-harmonic method. A Fourier image analysis of the single-
harmonic and bi-harmonic images is performed and a thresh-
olding of the Fourier image spectra are shown in Figure 11(b).
The Fourier image analysis gives the spatial frequency of the
image in its horizontal and vertical components.

One measure of the sharpness of an image is the radius
of the cluster of points in the middle of the Fourier image
spectra.29 As seen in Figure 11(b), the larger radius of the
cluster on the bi-harmonic image spectra indicates that the bi-
harmonic image is sharper than the single-harmonic image.
The reader may be able to observe the improved sharpness of
the image in Figure 11(a) with a high-resolution copy of this
paper.

C. Case II: Higher-speed imaging in hard-tapping
region

As the scan speed is increased, spatial frequencies
map to higher temporal frequencies. In the higher-frequency
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FIG. 11. (a) Surface image (1 × 1 μm) of cobalt sample scanned at 1 Hz. The tapping trajectory was changed mid-way through the scan from single harmonic
(A2/A01 = 0) to bi-harmonic (A2/A01 = 0.2). (b) Fourier image transform of single and bi-harmonic sections of (a). Note: SH indicates single harmonic tapping
and BH indicates bi-harmonic tapping.

region the tracking error will dominate noise and image error
will increase. Although image quality will reduce for both the
single-harmonic and bi-harmonic images when compared to
the lower scan speed (Case I), the bi-harmonic image will be
less affected because of its higher sensitivity.

The cobalt sample was again imaged with the same pa-
rameters as in Sec. IV B, except that the scan speed was in-
creased to 5 Hz. Figure 12(a) shows the acquired image with
the top half using single-harmonic and then switching to bi-
harmonic (A2/A01 = 0.2) half way through the scan. The bet-
ter quality of the bi-harmonic image compared to the single-
harmonic is visually recognizable, confirming the benefit of

higher loop sensitivity function bandwidth in higher-speed
imaging.

D. Case III: Low-speed imaging in soft tapping region

In soft tapping the measurement sensitivity is much lower
than in hard-tapping, and thus even at low speeds the image
accuracy can be poor. Figure 13 shows cobalt surface im-
age obtained by operating in the soft tapping region with the
tapping trajectory switched from single to broad valley mid-
way through. The image was obtained by scanning an area of

FIG. 12. (a) Surface image (1 × 1 μm) of cobalt sample scanned at 5 Hz. The tapping trajectory was changed mid-way through the scan from single harmonic
(A2/A01 = 0) to bi-harmonic (A2/A01 = 0.2). (b) Fourier image transform of single and bi-harmonic sections of (a). Note: SH indicates single harmonic tapping
and BH indicates bi-harmonic tapping.
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FIG. 13. Cobalt sample (1 × 1 μm) scan with the tapping trajectory changed to bi-harmonic (A2/A01 = 0.2) mid-way through the scan. (a) Two-dimensional
surface height image. (b) Three-dimensional representation of (a). Note: SH indicates single harmonic tapping and BH indicates bi-harmonic tapping.

1 × 1 μm at 1 Hz scan speed with the same controller
gains and bi-harmonic amplitude ratio (A2/A01 = 0.2) as in
Sec. IV B. The free RMS amplitude of the cantilever was
set to 115 nm with RMS set point amplitude fixed around
110 nm. In single harmonic operation, low sensitivity resulted
in poor surface tracking, generating a blurry image. However,
when the trajectory was switched to bi-harmonic, the higher
sensitivity resulted in a stronger signal for the feedback con-
troller, and thereby improved the surface tracking. The result
is a sharp and detailed image.

V. CONCLUSIONS

In summary, we have presented a novel idea of improving
the mechanical sensitivity of TM-AFM probe through trajec-
tory shaping. In this method, the conventional sinusoidal tap-
ping trajectory is altered by driving the cantilever with drive
signal composed of a 2nd harmonic at twice the frequency
of the primary harmonic. Mathematical analysis shows that
by maintaining appropriate amplitude and phase at the first
and second harmonic frequencies the tapping trajectory can
be reshaped into a broad valley trajectory, whose inherent
characteristic (offset) results in improved measurement sen-
sitivity. The theory behind this effect has also been presented.
Though rectangular AFM cantilevers respond to bi-harmonic
drive signal, large drive force is required at the second har-
monic to achieve decent trajectory shaping. Given the con-
straints on electronic hardware such a force may not be realiz-
able. In order to overcome this issue we have developed a can-
tilever design whose 2nd resonant frequency is twice its 1st
resonant frequency. This property makes the new cantilever
readily respond to bi-harmonic drive signal. Such a cantilever

was fabricated from a standard commercial cantilever using a
FIB.

Experiments show that bi-harmonic trajectories improve
measurement sensitivity by 30% compared to sinusoidal tap-
ping. While useful in standard imaging applications to obtain
the most accurate measurements, the approach appears to be
especially useful in non-ideal imaging conditions like high
speed scanning and in weak force fields where the sensitiv-
ity of sinusoidal trajectory is poor. In these conditions, broad
valley tapping renders significantly sharper and more accurate
images.
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