523 research outputs found

    Gravitational Effects on Domain Walls with Curvature Correction

    Get PDF
    We derive the effective action for a domain wall with small thickness in curved spacetime and show that, apart from the Nambu term, it includes a contribution proportional to the induced curvature. We then use this action to study the dynamics of a spherical thick bubble of false vacuum (de Sitter) surrounded by an infinite region of true vacuum (Schwarzschild)

    An analytical approximation scheme to two point boundary value problems of ordinary differential equations

    Get PDF
    A new (algebraic) approximation scheme to find {\sl global} solutions of two point boundary value problems of ordinary differential equations (ODE's) is presented. The method is applicable for both linear and nonlinear (coupled) ODE's whose solutions are analytic near one of the boundary points. It is based on replacing the original ODE's by a sequence of auxiliary first order polynomial ODE's with constant coefficients. The coefficients in the auxiliary ODE's are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. To obtain the parameters of the global (connecting) solutions analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the ``connecting parameters'' for a number of nonlinear ODE's arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODE's coming from the exact renormalization group. The ground state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision.Comment: 5 pages, 3 tables, Late

    Some results on homoclinic and heteroclinic connections in planar systems

    Get PDF
    Consider a family of planar systems depending on two parameters (n,b)(n,b) and having at most one limit cycle. Assume that the limit cycle disappears at some homoclinic (or heteroclinic) connection when Φ(n,b)=0.\Phi(n,b)=0. We present a method that allows to obtain a sequence of explicit algebraic lower and upper bounds for the bifurcation set Φ(n,b)=0.{\Phi(n,b)=0}. The method is applied to two quadratic families, one of them is the well-known Bogdanov-Takens system. One of the results that we obtain for this system is the bifurcation curve for small values of nn, given by b=57n1/2+72/2401n30024/45294865n3/22352961656/11108339166925n2+O(n5/2)b=\frac5 7 n^{1/2}+{72/2401}n- {30024/45294865}n^{3/2}- {2352961656/11108339166925} n^2+O(n^{5/2}). We obtain the new three terms from purely algebraic calculations, without evaluating Melnikov functions

    Cosmic strings in axionic-dilatonic gravity

    Get PDF
    We first consider local cosmic strings in dilaton-axion gravity and show that they are singular solutions. Then we take a supermassive Higgs limit and present expressions for the fields at far distances from the core by applying a Pecci-Quinn and a duality transformation to the dilatonic Melvin's magnetic universe.Comment: Latex file. 16 page

    Macrodimers: ultralong range Rydberg molecules

    Full text link
    We study long range interactions between two Rydberg atoms and predict the existence of ultralong range Rydberg dimers with equilibrium distances of many thousand Bohr radii. We calculate the dispersion coefficients C5C_{5}, C6C_{6} and C8C_{8} for two rubidium atoms in the same excited level npnp, and find that they scale like n8n^{8}, n11n^{11} and n15n^{15}, respectively. We show that for certain molecular symmetries, these coefficients lead to long range potential wells that can support molecular bound levels. Such macrodimers would be very sensitive to their environment, and could probe weak interactions. We suggest experiments to detect these macrodimers.Comment: 4 pages, submitted to PR

    Electrostatics in a simple wormhole revisited

    Full text link
    The electrostatic potential generated by a point charge at rest in a simple static, spherically symmetric wormhole is given in the form of series of multipoles and in closed form. The general potential which is physically acceptable depends on a parameter due to the fact that the monopole solution is arbitrary. When the wormhole has Z2-symmetry, the potential is completely determined. The calculation of the electrostatic self-energy and of the self-force is performed in all cases considered.Comment: 16 pages, no figure

    Light Rays at Optical Black Holes in Moving Media

    Full text link
    Light experiences a non-uniformly moving medium as an effective gravitational field, endowed with an effective metric tensor g~μν=ημν+(n21)uμuν\tilde{g}^{\mu \nu}=\eta^{\mu \nu}+(n^2-1)u^\mu u^\nu, nn being the refractive index and uμu^\mu the four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60}, 4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a vortex flow was considered. It was later pointed out by Visser [Phys. Rev. Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole containing an event horizon, it becomes necessary to add an inward radial velocity component to the vortex flow. In the present paper we undertake this task: we consider a full spiral flow, consisting of a vortex component plus a radially infalling component. Light propagates in such a dielectric medium in a way similar to that occurring around a rotating black hole. We calculate, and show graphically, the effective potential versus the radial distance from the vortex singularity, and show that the spiral flow can always capture light in both a positive, and a negative, inverse impact parameter interval. The existence of a genuine event horizon is found to depend on the strength of the radial flow, relative to the strength of the azimuthal flow. A limitation of our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in section 6; 5 new references. Version to appear in Phys. Rev.

    Potential--density pairs for spherical galaxies and bulges: the influence of scalar fields

    Full text link
    A family of potential--density pairs has been found for spherical halos and bulges of galaxies in the Newtonian limit of scalar--tensor theories of gravity. The scalar field is described by a Klein--Gordon equation with a source that is coupled to the standard Poisson equation of Newtonian gravity. The net gravitational force is given by two contributions: the standard Newtonian potential plus a term stemming from massive scalar fields. General solutions have been found for spherical systems. In particular, we compute potential--density pairs of spherical galactic systems, and some other astrophysical quantities that are relevant to generating initial conditions for spherical galaxy simulations.Comment: Paper accepted for publication in MNRAS, with four figure

    Large Scale Cosmic Microwave Background Anisotropies and Dark Energy

    Get PDF
    In this note we investigate the effects of perturbations in a dark energy component with a constant equation of state on large scale cosmic microwave background anisotropies. The inclusion of perturbations increases the large scale power. We investigate more speculative dark energy models with w<-1 and find the opposite behaviour. Overall the inclusion of perturbations in the dark energy component increases the degeneracies. We generalise the parameterization of the dark energy fluctuations to allow for an arbitrary const ant sound speeds and show how constraints from cosmic microwave background experiments change if this is included. Combining cosmic microwave background with large scale structure, Hubble parameter and Supernovae observations we obtain w=-1.02+-0.16 (1 sigma) as a constraint on the equation of state, which is almost independent of the sound speed chosen. With the presented analysis we find no significant constraint on the constant speed of sound of the dark energy component.Comment: 7 pages, 8 figures, minor changes to match version accepted for publication in MNRA

    D-Dimensional Radiative Plasma: A Kinetic Approach

    Get PDF
    The covariant kinetic approach for the radiative plasma, a mixture of a relativistic moving gas plus radiation quanta (photons, neutrinos, or gravitons) is generalized to D spatial dimensions. The operational and physical meaning of Eckart's temperature is reexamined and the D-dimensional expressions for the transport coefficients (heat conduction, bulk and shear viscosity) are explicitly evaluated to first order in the mean free time of the radiation quanta. Weinberg's conclusion that the mixture behaves like a relativistic imperfect simple fluid (in Eckart's formulation) depends neither on the number of spatial dimensions nor on the details of the collisional term. The case of Thomson scaterring is studied in detail, and some consequences for higher dimensional cosmologies are also discussed.Comment: 28 pages, 1 figure, uses REVTE
    corecore