202 research outputs found

    The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds

    Full text link
    The ionization fraction plays a key role in the chemistry and dynamics of molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the Photodissociation Region (PDR), as a template to investigate the ionization fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+ J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and new HOC+ and CO+ observations. We compare self-consistently the observed spatial distribution and line intensities with detailed depth-dependent predictions of a PDR model coupled with a nonlocal radiative transfer calculation. The chemical network includes deuterated species, 13C fractionation reactions and HCO+/HOC+ isomerization reactions. The role of neutral and charged PAHs in the cloud chemistry and ionization balance is investigated. The detection of HOC+ reactive ion towards the Horsehead PDR proves the high ionization fraction of the outer UV irradiated regions, where we derive a low [HCO+]/[HOC+]~75-200 abundance ratio. In the absence of PAHs, we reproduce the observations with gas-phase metal abundances, [Fe+Mg+...], lower than 4x10(-9) (with respect to H) and a cosmic-rays ionization rate of zeta=(5+/-3)x10(-17) s(-1). The inclusion of PAHs modifies the ionization fraction gradient and increases the required metal abundance. The ionization fraction in the Horsehead edge follows a steep gradient, with a scale length of ~0.05 pc (or ~25''), from [e-]~10(-4) (or n_e ~ 1-5 cm(-3)) in the PDR to a few times ~10(-9) in the core. PAH^- anions play a role in the charge balance of the cold and neutral gas if substantial amounts of free PAHs are present ([PAH] >10(-8)).Comment: 13 pages, 7 figures, 6 tables. Accepted for publication in A&A (english not edited

    Solenoidal versus compressive turbulence forcing

    Full text link
    We analyze the statistics and star formation rate obtained in high-resolution numerical experiments of forced supersonic turbulence, and compare with observations. We concentrate on a systematic comparison of solenoidal (divergence-free) and compressive (curl-free) forcing, which are two limiting cases of turbulence driving. Our results show that for the same RMS Mach number, compressive forcing produces a three times larger standard deviation of the density probability distribution. When self-gravity is included in the models, the star formation rate is more than one order of magnitude higher for compressive forcing than for solenoidal forcing.Comment: 1 page, to appear in the proceedings of the IAU General Assembly Joint Discussion 14 "FIR2009: The ISM of Galaxies in the Far-Infrared and Sub-Millimetre", ed. M. Cunningha

    An Unbiased 1.3 mm Emission Line Survey of the Protoplanetary Disk Orbiting LkCa 15

    Get PDF
    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ~2-5 Myr-old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210-270 GHz (1.4 - 1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimetrique (IRAM) 30 meter telescope. The survey demonstrates that, in this spectral region, the most readily detectable lines are those of CO and its isotopologues 13CO and C18O, as well as HCO+, HCN, CN, C2H, CS, and H2CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2-1) and C2H (3-2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C2H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high resolution interferometric imaging of disks.Comment: 35 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Spitzer Infrared Spectrograph Detection of Molecular Hydrogen Rotational Emission towards Translucent Clouds

    Get PDF
    Using the Infrared Spectrograph on board the Spitzer Space Telescope, we have detected emission in the S(0), S(1), and S(2) pure-rotational (v = 0-0) transitions of molecular hydrogen (H_2) toward six positions in two translucent high Galactic latitude clouds, DCld 300.2–16.9 and LDN 1780. The detection of these lines raises important questions regarding the physical conditions inside low-extinction clouds that are far from ultraviolet radiation sources. The ratio between the S(2) flux and the flux from polycyclic aromatic hydrocarbons (PAHs) at 7.9 μm averages 0.007 for these six positions. This is a factor of about four higher than the same ratio measured toward the central regions of non-active Galaxies in the Spitzer Infrared Nearby Galaxies Survey. Thus, the environment of these translucent clouds is more efficient at producing rotationally excited H_2 per PAH-exciting photon than the disks of entire galaxies. Excitation analysis finds that the S(1) and S(2) emitting regions are warm (T ≳ 300 K), but comprise no more than 2% of the gas mass. We find that UV photons cannot be the sole source of excitation in these regions and suggest mechanical heating via shocks or turbulent dissipation as the dominant cause of the emission. The clouds are located on the outskirts of the Scorpius-Centaurus OB association and may be dissipating recent bursts of mechanical energy input from supernova explosions. We suggest that pockets of warm gas in diffuse or translucent clouds, integrated over the disks of galaxies, may represent a major source of all non-active galaxy H_2 emission

    Collisional excitation of doubly and triply deuterated ammonia ND2_2H and ND3_3 by H2_2

    Get PDF
    The availability of collisional rate coefficients is a prerequisite for an accurate interpretation of astrophysical observations, since the observed media often harbour densities where molecules are populated under non--LTE conditions. In the current study, we present calculations of rate coefficients suitable to describe the various spin isomers of multiply deuterated ammonia, namely the ND2_2H and ND3_3 isotopologues. These calculations are based on the most accurate NH3_3--H2_2 potential energy surface available, which has been modified to describe the geometrical changes induced by the nuclear substitutions. The dynamical calculations are performed within the close--coupling formalism and are carried out in order to provide rate coefficients up to a temperature of TT = 50K. For the various isotopologues/symmetries, we provide rate coefficients for the energy levels below \sim 100 cm1^{-1}. Subsequently, these new rate coefficients are used in astrophysical models aimed at reproducing the NH2_2D, ND2_2H and ND3_3 observations previously reported towards the prestellar cores B1b and 16293E. We thus update the estimates of the corresponding column densities and find a reasonable agreement with the previous models. In particular, the ortho--to--para ratios of NH2_2D and NHD2_2 are found to be consistent with the statistical ratios

    Nitrogen chemistry and depletion in starless cores

    Full text link
    We investigated the chemistry of nitrogen--containing species, principally isotopomers of CN, HCN, and HNC, in a sample of pre-protostellar cores. We used the IRAM 30 m telescope to measure the emission in rotational and hyperfine transitions of CN, HCN, 13CN, H13CN, HN13C, and HC15N, in L 1544, L 183, Oph D, L 1517B, L 310. The observations were made along axial cuts through the dust emission peak, at a number of regularly--spaced offset positions. The observations were reduced and analyzed to obtain the column densities, using the measurements of the less abundant isotopic variants in order to minimize the consequences of finite optical depths in the lines. The observations were compared with the predictions of a free--fall gravitational collapse model, which incorporates a non-equilibrium treatment of the relevant chemistry. We found that CN, HCN, and HNC remain present in the gas phase at densities well above that at which CO depletes on to grains. The CN:HCN and the HNC:HCN abundance ratios are larger than unity in all the objects of our sample. Furthermore, there is no observational evidence for large variations of these ratios with increasing offset from the dust emission peak and hence with density. Whilst the differential freeze--out of CN and CO can be understood in terms of the current chemistry, the behaviour of the CN:HCN ratio is more difficult to explain. Models suggest that most nitrogen is not in the gas phase but may be locked in ices. Unambiguous conclusions require measurements of the rate coefficients of the key neutral--neutral reactions at low temperatures

    Deuterium fractionation in the Horsehead edge

    Get PDF
    Deuterium fractionation is known to enhance the [DCO+]/[HCO+] abundance ratio over the D/H elemental ratio of about 1e-5 in the cold and dense gas typically found in pre-stellar cores. We report the first detection and mapping of very bright DCO+ J=3-2 and J=2-1 lines (3 and 4 K respectively) towards the Horsehead photodissociation region (PDR) observed with the IRAM-30m telescope. The DCO+ emission peaks close to the illuminated warm edge of the nebula (< 50" or about 0.1 pc away). Detailed nonlocal, non-LTE excitation and radiative transfer analyses have been used to determine the prevailing physical conditions and to estimate the DCO+ and H13CO+ abundances from their line intensities. A large [DCO+]/[HCO+] abundance ratio (>= 0.02) is inferred at the DCO+ emission peak, a condensation shielded from the illuminating far-UV radiation field where the gas must be cold (10-20 K) and dense (>= 2x10^5 cm-3). DCO+ is not detected in the warmer photodissociation front, implying a lower [DCO+]/[HCO+] ratio (< 1e-3). According to our gas phase chemical predictions, such a high deuterium fractionation of HCO+ can only be explained if the gas temperature is below 20 K, in good agreement with DCO+ excitation calculations.Comment: 4 pages, 3 PostScript figures. Accepted for publication in Astronomy & Astrophysics in the letter section. Uses aa LaTeX macro

    Selectivity of the photosensitiser Tookad® for photodynamic therapy evaluated in the Syrian golden hamster cheek pouch tumour model

    Get PDF
    The response to photodynamic therapy (PDT) with the photosensitiser (PS) Tookad was measured in the Syrian hamster cheek pouch model on normal mucosae and chemically induced squamous cell carcinoma. This PS is a palladium-bacteriopheophorbide presenting absorption peaks at 538 and 762 nm. The light dose, drug dose and drug injection-light irradiation times (DLI), ranging between 100 and 300 J cm(-2), 1-5 mg kg(-1) and 10-240 min respectively, were varied and the response to PDT was analysed by staging the macroscopic response and by the histological examination of the sections of the irradiated cheek pouch. A fast time decay of the tissular response with drug dose of 1-5 mg kg(-1) was observed for DLI ranging from 10 to 240 min and for light doses of 100-300 J cm(-2) delivered at a light dose rate of 150 mW cm(-2). A significantly higher level of tissular response was observed for squamous cell carcinoma compared to normal tissue. Nevertheless, the threshold level of the drug-light dose for a detectable response was not significantly different in the tumoral vs normal tissue. The highest response at the shortest DLIs and the absence of measurable response at DLI larger than 240 min at light dose of 300 J cm(-2) and drug dose of 5 mg kg(-1) reveals the predominantly vascular effect of Tookad. This observation suggests that Tookad could be effective in PDT of vascularised lesions

    Wavelength-dependent effect of tetra(m-hydroxyphenyl)chlorin for photodynamic therapy in an ‘early' squamous cell carcinoma model

    Get PDF
    The purpose of the present study was to correlate the wavelength of the irradiation source with the phototoxic activity of tetra(m-hydroxyphenyl)chlorin (mTHPC) in healthy and neoplastic mucosae. The hamster tumour model for early squamous cell carcinoma was used in these experiments. In vitro and in vivo studies have shown that mTHPC absorbs significantly at 652 nm (1, 2). This wavelength is used currently in clinical mTHPC photodynamic therapy (PDT) trials. In order to study the wavelength dependence of the phototoxic effect on normal and tumour tissues, irradiation tests were performed 4 days after injection of 0.5mg kg-1 mTHPC. An argon-ion pumped dye laser was used as the light source. The light dose of 12 J cm-2 was delivered at a light dose rate of 150 mW cm-2. The wavelength was varied between 642.5 and 665 nm at 2.5-nm increments. The PDT damage was evaluated in serial Haematoxylin and Eosin stained sections using a tissue-damage scale. Light between 647.5 and 652.5 nm induced the highest damage to both the healthy and tumour mucosae. At wavelengths equal to or below 645 nm, and equal to or above 655 nm, tissue damage decreased. Wavelengths below 642 nm and above 660 nm did not induce any visible tissue damage. These results suggest that the in vivo optimal wavelength range for PDT with mTHPC is between 647 and 652 nm. This information is essential for selecting an appropriate light sourc
    corecore