We analyze the statistics and star formation rate obtained in high-resolution
numerical experiments of forced supersonic turbulence, and compare with
observations. We concentrate on a systematic comparison of solenoidal
(divergence-free) and compressive (curl-free) forcing, which are two limiting
cases of turbulence driving. Our results show that for the same RMS Mach
number, compressive forcing produces a three times larger standard deviation of
the density probability distribution. When self-gravity is included in the
models, the star formation rate is more than one order of magnitude higher for
compressive forcing than for solenoidal forcing.Comment: 1 page, to appear in the proceedings of the IAU General Assembly
Joint Discussion 14 "FIR2009: The ISM of Galaxies in the Far-Infrared and
Sub-Millimetre", ed. M. Cunningha