42 research outputs found

    Infants' sex affects neural responses to affective touch in early infancy

    Get PDF
    Social touch is closely related to the establishment and maintenance of social bonds in humans, and the sensory brain circuit for gentle brushing is already active soon after birth. Brain development is known to be sexually dimorphic, but the potential effect of sex on brain activation to gentle touch remains unknown. Here, we examined brain activation to gentle skin stroking, a tactile stimulation that resembles affective or social touch, in term-born neonates. Eighteen infants aged 11–36 days, recruited from the FinnBrain Birth Cohort Study, were included in the study. During natural sleep, soft brush strokes were applied to the skin of the right leg during functional magnetic resonance imaging (fMRI) at 3 cm/s velocity. We examined potential differ- ences in brain activation between males (n = 10) and females (n = 8) and found that females had larger blood oxygenation level dependent (BOLD) responses (brushing vs. rest) in bilateral orbitofrontal cortex (OFC), right ventral striatum and bilateral inferior striatum, pons, and cerebellum compared to males. Moreover, the psychophysiologi- cal interactions (PPI) analysis, setting the left and right OFC as seed regions, revealed significant differences between males and females. Females exhibited stronger PPI connectivity between the left OFC and posterior cingulate or cuneus. Our work sug- gests that social touch neural responses are different in male and female neonates, which may have major ramifications for later brain, cognitive, and social development. Finally, many of the sexually dimorphic brain responses were subcortical, not captured by surface-based neuroimaging, indicating that fMRI will be a relevant technique for future studies

    Resting-state networks of the neonate brain identified using independent component analysis

    Get PDF
    Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully used to probe the intrinsic functional organization of the brain and to study brain development. Here, we implemented a combination of individual and group independent component analysis (ICA) of FSL on a 6-min resting-state data set acquired from 21 naturally sleeping term-born (age 26 +/- 6.7 d), healthy neonates to investigate the emerging functional resting-state networks (RSNs). In line with the previous literature, we found evidence of sensorimotor, auditory/language, visual, cerebellar, thalmic, parietal, prefrontal, anterior cingulate as well as dorsal and ventral aspects of the default-mode-network. Additionally, we identified RSNs in frontal, parietal, and temporal regions that have not been previously described in this age group and correspond to the canonical RSNs established in adults. Importantly, we found that careful ICA-based denoising of fMRI data increased the number of networks identified with group-ICA, whereas the degree of spatial smoothing did not change the number of identified networks. Our results show that the infant brain has an established set of RSNs soon after birth

    Maternal pre-pregnancy BMI associates with neonate local and distal functional connectivity of the left superior frontal gyrus

    Get PDF
    Maternal obesity/overweight during pregnancy has reached epidemic proportions and has been linked with adverse outcomes for the offspring, including cognitive impairment and increased risk for neuropsychiatric disorders. Prior neuroimaging investigations have reported widespread aberrant functional connectivity and white matter tract abnormalities in neonates born to obese mothers. Here we explored whether maternal pre-pregnancy adiposity is associated with alterations in local neuronal synchrony and distal connectivity in the neonate brain. 21 healthy mother-neonate dyads from uncomplicated pregnancies were included in this study (age at scanning 26.14 +/- 6.28 days, 12 male). The neonates were scanned with a 6-min resting-state functional magnetic resonance imaging (rs-fMRI) during natural sleep. Regional homogeneity (ReHo) maps were computed from obtained rs-fMRI data. Multiple regression analysis was performed to assess the association of pre-pregnancy maternal body-mass-index (BMI) and ReHo. Seed-based connectivity analysis with multiple regression was subsequently performed with seed-ROI derived from ReHo analysis. Maternal adiposity measured by pre-pregnancy BMI was positively associated with neonate ReHo values within the left superior frontal gyrus (SFG) (FWE-corrected p < 0.005). Additionally, we found both positive and negative associations (p < 0.05, FWE-corrected) for maternal pre-pregnancy BMI and seed-based connectivity between left SFG and prefrontal, amygdalae, basal ganglia and insular regions. Our results imply that maternal pre-pregnancy BMI associates with local and distal functional connectivity within the neonate left superior frontal gyrus. These findings add to the evidence that increased maternal pre-pregnancy BMI has a programming influence on the developing neonate brain functional networks

    C-tactile afferent stimulating touch carries a positive affective value

    Get PDF
    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly

    Developmental perspectives on interpersonal affective touch

    Get PDF
    In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self

    Searchlight Goes GPU: Fast Multi-Voxel Pattern Analysis of fMRI Data

    No full text
    The searchlight algorithm is a popular choice for locally-multivariate decoding of fMRI data. A substantial drawback of searchlight is the increase in computational complexity, compared to the univariate general linear model. This is especially true for large searchlight spheres, non-linear classifiers, cross validation schemes and statistical permutation testing. Here we therefore present a graphics processing unit (GPU) implementation of the searchlight algorithm, to enable fast locally-multivariate fMRI analysis. The GPU implementation is 21 times faster than a multithreaded Matlab implementation. This makes it possible to apply 10 000 permutations with leave-one-out cross-validation in about 19 minutes

    Somatotopic organization of gentle touch processing in the posterior insular cortex.

    No full text
    A network of thin (C and A delta) afferents relays various signals related to the physiological condition of the body, including sensations of gentle touch, pain, and temperature changes. Such afferents project to the insular cortex, where a somatotopic organization of responses to noxious and cooling stimuli was recently observed. To explore the possibility of a corresponding body-map topography in relation to gentle touch mediated through C tactile (CT) fibers, we applied soft brush stimuli to the right forearm and thigh of a patient (GL) lacking A beta afferents, and six healthy subjects during functional magnetic resonance imaging (fMRI). For improved fMRI analysis, we used a highly sensitive multivariate voxel clustering approach. A somatotopic organization of the left (contralateral) posterior insular cortex was consistently demonstrated in all subjects, including GL, with forearm projecting anterior to thigh stimulation. Also, despite denying any sense of touch in daily life, GL correctly localized 97% of the stimuli to the forearm or thigh in a forced-choice paradigm. The consistency in activation patterns across GL and the healthy subjects suggests that the identified organization reflects the central projection of CT fibers. Moreover, substantial similarities of the presently observed insular activation with that described for noxious and cooling stimuli solidify the hypothesized sensory-affective role of the CT system in the maintenance of physical well-being as part of a thin-afferent homeostatic network

    Neural correlates of gentle skin stroking in early infancy

    No full text
    Physical expressions of affection play a foundational role in early brain development, but the neural correlates of affective touch processing in infancy remain unclear. We examined brain responses to gentle skin stroking, a type of tactile stimulus associated with affectionate touch, in young infants. Thirteen term-born infants aged 11-36 days, recruited through the FinnBrain Birth Cohort Study, were included in the study. Soft brush strokes, which activate brain regions linked to somatosensory as well as socio-affective processing in children and adults, were applied to the skin of the right leg during functional magnetic resonance imaging. We examined infant brain responses in two regions-of-interest (ROIs) known to process gentle skin stroking - the postcentral gyrus and posterior insular cortex - and found significant responses in both ROIs. These results suggest that the neonate brain is responsive to gentle skin stroking within the first weeks of age, and that regions linked to primary somatosensory as well as socio-affective processing are activated. Our findings support the notion that social touch may play an important role in early life sensory processing. Future research will elucidate the significance of these findings for human brain development.Funding Agencies|Hospital District of Southwest Finland; Signe and Ane Gyllenberg Foundation; Brain and Behavioral Foundation (NARSAD) YI Grant [19056]; Finnish Academy; Jane and Aatos Erkko Foundation; Jalmari and Rauha Ahokas Foundation; European Union Seventh Framework Program (FP7/2007-2013) [PIOF-GA-2012-302896]; Soderstrom-Konigska Foundation; Fredrik och Ingrid Thuring Foundation; Linnea och Josef Carlsson Foundation; O. E. och Edla Johanssons Foundation</p
    corecore