40 research outputs found

    Revisiting the Direct Sum Theorem and Space Lower Bounds in Random Order Streams

    Get PDF
    Estimating frequency moments and LpL_p distances are well studied problems in the adversarial data stream model and tight space bounds are known for these two problems. There has been growing interest in revisiting these problems in the framework of random-order streams. The best space lower bound known for computing the kthk^{th} frequency moment in random-order streams is Ω(n12.5/k)\Omega(n^{1-2.5/k}) by Andoni et al., and it is conjectured that the real lower bound shall be Ω(n12/k)\Omega(n^{1-2/k}). In this paper, we resolve this conjecture. In our approach, we revisit the direct sum theorem developed by Bar-Yossef et al. in a random-partition private messages model and provide a tight Ω(n12/k/)\Omega(n^{1-2/k}/\ell) space lower bound for any \ell-pass algorithm that approximates the frequency moment in random-order stream model to a constant factor. Finally, we also introduce the notion of space-entropy tradeoffs in random order streams, as a means of studying intermediate models between adversarial and fully random order streams. We show an almost tight space-entropy tradeoff for LL_\infty distance and a non-trivial tradeoff for LpL_p distances

    The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion

    Get PDF
    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells

    Clinical and genetic analyses of three Korean families with hereditary hemorrhagic telangiectasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder, characterized by recurrent epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVMs) in various visceral organs. Endoglin (<it>ENG</it>) and activin receptor-like kinase 1 (<it>ACVRL1; ALK1</it>), receptors for transforming growth factor-β (TGF-β) superfamily, have been identified as the principal HHT-causing genes.</p> <p>Methods</p> <p>Three unrelated Korean HHT patients and their asymptomatic as well as symptomatic family members were genetically diagnosed by sequencing whole exons and their flanking regions of <it>ENG </it>and <it>ACVRL1</it>. Functionality of an aberrant translation start codon, which is created by a substitution mutation at the 5'-untranslated region (UTR) of <it>ENG </it>found in a HHT family, was tested by transient <it>in vitro </it>transfection assay. Decay of the mutant transcripts was also assessed by allele-specific expression analysis.</p> <p>Results</p> <p>Two <it>ENG </it>and one <it>ACVRL1 </it>mutations were identified: a known <it>ENG </it>mutation (c.360+1G > A; p.Gly74_Tyr120del); a novel <it>ENG </it>mutation (c.1-127C > T); and a novel <it>ACVRL1 </it>mutation (c.252_253insC; p.Val85fsX168). We further validated that the 5'-UTR <it>ENG </it>mutation prevents translation of ENG from the biological translation initiation site of the mutant allele, and leads to degradation of the mutant transcripts.</p> <p>Conclusions</p> <p>This is the first experimental demonstration that a 5'-UTR mutation can prevent translation of ENG among HHT patients, and further supports the previous notion that haploinsufficiency is the primary mechanism of HHT1. Our data also underscore the importance of including exons encoding 5' UTR for HHT mutation screening.</p

    Genotypic classification of patients with Wolfram syndrome: insights into the natural history of the disease and correlation with phenotype

    Get PDF
    Purpose: Wolfram syndrome is a degenerative, recessive rare disease with an onset in childhood. It is caused by mutations in WFS1 or CISD2 genes. More than 200 different variations in WFS1 have been described in patients with Wolfram syndrome, which complicates the establishment of clear genotype-phenotype correlation. The purpose of this study was to elucidate the role of WFS1 mutations and update the natural history of the disease. Methods: This study analyzed clinical and genetic data of 412 patients with Wolfram syndrome published in the last 15 years. Results: (i) 15% of published patients do not fulfill the current ­inclusion criterion; (ii) genotypic prevalence differences may exist among countries; (iii) diabetes mellitus and optic atrophy might not be the first two clinical features in some patients; (iv) mutations are nonuniformly distributed in WFS1; (v) age at onset of diabetes mellitus, hearing defects, and diabetes insipidus may depend on the patient"s genotypic class; and (vi) disease progression rate might depend on genotypic class. Conclusion: New genotype-phenotype correlations were established, disease progression rate for the general population and for the genotypic classes has been calculated, and new diagnostic criteria have been proposed. The conclusions raised could be important for patient management and counseling as well as for the development of treatments for Wolfram syndrome

    A Mild Form of SLC29A3 Disorder: A Frameshift Deletion Leads to the Paradoxical Translation of an Otherwise Noncoding mRNA Splice Variant

    Get PDF
    We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3). Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD) in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the ‘rescue’ role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic

    Unfolded protein response is an early, non-critical event during hepatic stellate cell activation.

    Get PDF
    Hepatic stellate cells activate upon liver injury and help at restoring damaged tissue by producing extracellular matrix proteins. A drastic increase in matrix proteins results in liver fibrosis and we hypothesize that this sudden increase leads to accumulation of proteins in the endoplasmic reticulum and its compensatory mechanism, the unfolded protein response. We indeed observe a very early, but transient induction of unfolded protein response genes during activation of primary mouse hepatic stellate cells in vitro and in vivo, prior to induction of classical stellate cell activation genes. This unfolded protein response does not seem sufficient to drive stellate cell activation on its own, as chemical induction of endoplasmic reticulum stress with tunicamycin in 3D cultured, quiescent stellate cells is not able to induce stellate cell activation. Inhibition of Jnk is important for the transduction of the unfolded protein response. Stellate cells isolated from Jnk knockout mice do not activate as much as their wild-type counterparts and do not have an induced expression of unfolded protein response genes. A timely termination of the unfolded protein response is essential to prevent endoplasmic reticulum stress-related apoptosis. A pathway known to be involved in this termination is the non-sense-mediated decay pathway. Non-sense-mediated decay inhibitors influence the unfolded protein response at early time points during stellate cell activation. Our data suggest that UPR in HSCs is differentially regulated between acute and chronic stages of the activation process. In conclusion, our data demonstrates that the unfolded protein response is a JNK1-dependent early event during hepatic stellate cell activation, which is counteracted by non-sense-mediated decay and is not sufficient to drive the stellate cell activation process. Therapeutic strategies based on UPR or NMD modulation might interfere with fibrosis, but will remain challenging because of the feedback mechanisms between the stress pathways

    On estimating frequency moments of data streams

    No full text
    Abstract. Space-economical estimation of the pth frequency moments, defined as Fp = P n i=1 |fi|p, for p&gt; 0, are of interest in estimating all-pairs distances in a large data matrix [14], machine learning, and in data stream computation. Random sketches formed by the inner product of the frequency vector f1,..., fn with a suitably chosen random vector were pioneered by Alon, Ma-tias and Szegedy [1], and have since played a central role in estimating Fp and for data stream computations in general. The concept of p-stable sketches formed by the inner product of the frequency vector with a random vector whose components are drawn from a p-stable distribution, was proposed by Indyk [11] for estimating Fp, for 0 &lt; p &lt; 2, and has been further studied in Li [13]. In this paper, we consider the problem of estimating Fp, for 0 &lt; p &lt; 2. A disadvantage of the sta-ble sketches technique and its variants is that they require O ( 1 ɛ 2) inner-products of the frequency vector with dense vectors of stable (or nearly stable [14, 13]) random variables to be maintained. This means that each stream update can be quite time-consuming. We present algorithms for esti-mating Fp, for 0 &lt; p &lt; 2, that does not require the use of stable sketches or its approximations. Our technique is elementary in nature, in that, it uses simple randomization in conjunction with well-known summary structures for data streams, such as the COUNT-MIN sketch [7] and the COUNTSKETCH structure [5]. Our algorithms require space 1 ± ɛ factors and requires expected time O(log F1 log 1 δ Õ ( 1 ɛ 2+p) 3 to estimate Fp to within) to process each update. Thus, our tech-nique trades an O ( 1 ɛ p) factor in space for much more efficient processing of stream updates. We also present a stand-alone iterative estimator for F1.
    corecore