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Revisiting the Direct Sum Theorem and Space Lower Bounds in Random
Order Streams

Abstract
Estimating frequency moments and $L_p$ distances are well studied problems in the adversarial data stream
model and tight space bounds are known for these two problems. There has been growing interest in revisiting
these problems in the framework of random-order streams. The best space lower bound known for computing
the $k^{th}$ frequency moment in random-order streams is $\Omega(n^{1-2.5/k})$ by Andoni et al., and it
is conjectured that the real lower bound shall be $\Omega(n^{1-2/k})$. In this paper, we resolve this
conjecture. In our approach, we revisit the direct sum theorem developed by Bar-Yossef et al. in a random-
partition private messages model and provide a tight $\Omega(n^{1-2/k}/\ell)$ space lower bound for any
$\ell$-pass algorithm that approximates the frequency moment in random-order stream model to a constant
factor. Finally, we also introduce the notion of space-entropy tradeoffs in random order streams, as a means of
studying intermediate models between adversarial and fully random order streams. We show an almost tight
space-entropy tradeoff for $L_\infty$ distance and a non-trivial tradeoff for $L_p$ distances.
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Revisiting the Direct Sum Theorem and Space
Lower Bounds in Random Order Streams

Sudipto Guha and Zhiyi Huang?

University of Pennsylvania, Philadelphia PA 19104, USA,
{sudipto, hzhiyi}@cis.upenn.edu

Abstract. Estimating frequency moments and Lp distances are well
studied problems in the adversarial data stream model and tight space
bounds are known for these two problems. There has been growing in-
terest in revisiting these problems in the framework of random-order
streams. The best space lower bound known for computing the kth fre-
quency moment in random-order streams is Ω(n1−2.5/k) by Andoni et al.,
and it is conjectured that the real lower bound shall be Ω(n1−2/k). In this
paper, we resolve this conjecture. In our approach, we revisit the direct
sum theorem developed by Bar-Yossef et al. in a random-partition pri-
vate messages model and provide a tight Ω(n1−2/k/`) space lower bound
for any `-pass algorithm that approximates the frequency moment in
random-order stream model to a constant factor. Finally, we also intro-
duce the notion of space-entropy tradeoffs in random order streams, as
a means of studying intermediate models between adversarial and fully
random order streams. We show an almost tight space-entropy tradeoff
for L∞ distance and a non-trivial tradeoff for Lp distances.

1 Introduction

The data stream model is a very useful computational model for designing effi-
cient algorithms for massive data sets. In the data stream model, the algorithm
can only access the data in a given order and for a limited number of times
(passes). Designing sub-linear space algorithms and proving space lower bound
for numerous problems have received a lot of attention.

The problem of estimating the Frequency Moments is one of the most studied
problems in data stream model. Given an alphabet Σ = {σ1, σ2, · · · , σm} of
size m and a sequence of n numbers x1, x2, · · · , xn in Σ, yi is the number of
occurrence of σi in the sequence, and the kth frequency moment fk is defined as
fk =

∑m
i=1 y

k
i .

Usually, it is assumed that the order is given by an adversary and the model
is known as adversarially ordered streaming. In this model, there are approxima-
tion algorithms for computing the kth frequency moment using only Õ(n1−2/k)
space [4, 12]. Alon et al. [1] proved the first lower bound of Ω(n1−5/k) for the
space required to estimate the kth frequency moment to a constant factor. Bar-
Yossef et al. [3] gave an improved lower bound of Ω(n1−3/k) via their direct
? This research was supported in part by NSF award CCF-0644119.



sum theorem. And Chakrabarti et al. [7] showed that any single-pass algorithm
required Ω(n1−2/k) space in order to approximate the kth frequency moment,
while for algorithms with a constant number of passes require Ω(n1−2/k/ log n)
space. Very recently, Gronemeier [9] improved the lower bound for constant-pass
algorithms to Ω(n1−2/k).

A related and almost equally well studied problem in the data stream model
is the approximation of L∞ and Lp distances. Given x = (x1, x2, · · · , xn) ∈
[0, `]n and y = (y1, y2, · · · , yn) ∈ [0, `]n, the Lp distance between x and y is
defined as Lp(x, y) = (

∑n
i=1 (xi − yi)p)1/p. The L∞ distance between x and y

is maxi |xi − yi|. Saks and Sun [14] proved that any two-party one-way protocol
that distinguishes L∞(x, y) = 1 from L∞(x, y) = ` with probability at least
2/3 uses at least Ω(n/`2) communication. Later, Bar-Yossef et al. [3] use their
direct sum theorem to prove the same space lower bound for general two-party
protocols. Matching protocols for this problem are also known. Using a reduction
from L∞ to Lp proposed by Saks and Sun, a space lower bound of Ω(n1−2/p/`2)
holds for Lp, p > 2.

In many scenarios, however, an adversarially ordered data stream is not the
best model, and recently, random-order data streams has received a lot of at-
tention [11, 5, 6]. The work which is closest to this paper, by Chakrabarti et al.
[5] show that the space complexity of estimating the kth frequency moment is
Ω(n1−3/k) and Ω(n1−3/k/ log n) for single-pass and constant-passes algorithms
respectively for the random order stream model. Andoni et al. [2] improve these
lower bounds to Ω(n1−2.5/k/ log n) and conjecture that the lower bound for ad-
versarially ordered streams holds for random-order streams.

Communication complexity [13, 15] plays a central role in proofs of most
results on space lower bound results. There are two models of communication
complexity which are useful in this context. The blackboard model refers to
the communication games in which players can broadcast their message to all
other players. In the private messages model, only one-to-one communication
is allowed. In the literature to date, most lower bound results are based on
reductions from various communication complexity problems in the blackboard
model. And a key technique is the direct sum theorem developed by Bar-Yossef
et al. [3]. In contrast, the private messages model has received less attention so
far. The private messages model is more restrictive than the broadcast model,
may lead to better space lower bounds; and further, to prove lower bounds in the
streaming model, the private message model is more relevant (in fact the order
in which he players speak is also preordained). To the best of our knowledge,
the only effort on proving space lower bound from communication complexity in
private messages model is the work on the longest increasing sequence problem
by Gal and Gopalan [8]. We note that direct lower bounds for streaming problems
that bypass communication games as in [10] also use ideas which are similar in
spirit to the private messages model.

Our Contributions. In this paper, we revisit the notion of information cost
and information complexity in the framework of private messages model. We
prove that the private information cost of a decomposable function is at least



as large as the sum of the private information costs of the primitive functions.
Using this direct sum theorem, we prove a tight Ω(nm/t2) lower bound for the
communication complexity of random-partition multiparty set disjointness. Here
n is the number of different items, m is the number of players. The players try
to distinguish the case that all items are distinct and the case that there are
t identical items. As a corollary of this result, we show that any `-pass algo-
rithm which gives constant factor approximation of the kth frequency moment
in random-order stream model requires Ω(n1−2/k/`) space. This result resolves
the conjecture by Andoni et al. [2]. It also provides an alternate approach for
space lower bound for constant-pass algorithms in adversarially ordered streams.

We then study protocols for L∞ and the tradeoff of the entropy of the input
order and the communication complexity used by the protocol. We show that if
the protocol can distinguish L∞ = ` and L∞ ≤ 1, and 2n log n− E = αn log n,
then the 2n-party communication complexity is at least Ω(n2−α(1+ε)/`2) for any
constant ε > 0. As a corollary, we haveΩ(n1−α(1+ε)/`2) andΩ(n1−2/p−α(1+ε)/`2)
space lower bounds for data stream algorithms which approximates L∞ and Lp
for p > 2 respectively. We also prove this tradeoff is essentially tight for L∞ and
give algorithm matching the lower bound.

2 Preliminaries

2.1 Definitions and Notations

Definition 1. Suppose Σ is a finite set. A function f : ΣT 7→ {0, 1} is de-
fined to be decomposable if there exists t, n and functions g : {0, 1}n 7→ {0, 1}
and h : Σt 7→ {0, 1} such that T = tn and the function f is of the form
f(x1, x2, · · · , xT ) = g

(
h(x1, x2, · · · , xt), · · · , h(x(n−1)t+1, · · · , xT )

)
. We call func-

tion h the primitive function.

We shall consider the following two special cases of decomposable functions in
this paper. If h is the Andt function with t input bits, and g is function Orn with
n input bits, the decomposable function f is denoted as the Set Disjointness
function:

SetDisjn,t = Orn (Andt(x1), · · · ,Andt(xn)) .

If h is the bivariate gap function BiGap` such that BiGap`(x, y) = 1 when
|x− y| = ` and BiGap`(x, y) = 0 when |x− y| = 0, 1, and g is function Or with
n input bits, then the decomposable function f is denoted as the Gap Distance
function:

GapDistn,` = Orn (BiGap`(x1, x2), · · · ,BiGap`(x2n−1, x2n)) .

We use capital letters X, Y , and Z to denote random variables. We use bold-
face letters X and Y to denote vectors. Moreover, we shall let X1,X2, · · · ,Xn

denote the input vectors of primitive functions and let X = X1×X2×· · ·×Xn

denote the input vector of the decomposable function f . We let ν denote the in-
put distribution of the primitive function and let µ denote the input distribution
of the decomposable function. Usually we shall have µ = νn.



We use [d] to denote the set {1, 2, · · · , d}. We say a distribution µ is sym-
metric if and only if for any permutation π of [T ], X ∼ π(X) ∼ µ.

Definition 2. A distribution µ is defined as a collapsing distribution if for any
input x drawn from the distribution µ and any Xi ∈ Σt, we always have that
f(x1, · · · ,xi−1,Xi,xi+1, · · · ,xn) = h(Xi).

We shall use η to denote the distribution of random variable Yi and let ζ
to denote the distribution of random vector Y . We shall have ζ = ηn. We will
consider the distribution of random vector X conditioned on Y .

Definition 3. Y is defined to partition X if the distribution of X given Y is
a product distribution.

2.2 Communication Games and various models

We let P denote a communication protocol. We shall always use δ to denote the
error rate of a protocol. Let Γ denote the set of all protocols and let Γδ denote
the set of all protocols whose error rate is at most δ. Similarly we shall use Φ and
Φδ to denote the set of all deterministic protocols and the set of all deterministic
protocols with error rate at most δ.

The term ε be denote the relevant approximation parameter (we shall con-
sider either (1+ε)-approximation or nε-approximation depending on the problem
we study). We use ρ to denote other small values.

Private Messages Model: We shall focus on the communication complexity of
various (decomposable) functions in private messages model (with public coins)
in this paper. A multiparty communication game in private messages model with
m players is as follows. In step 1, the first player sends a message M1

1 to the
second player based merely on her own input. In general, in step im+j such that
i ≥ 0 and 1 ≤ j ≤ m the jth player sends a message M j

i+1 to the (j+ 1)th player
based on her own input and all messages she received from the (j − 1)th player.
Note that in private messages model, each message is known only by the sender
and recipient. This is a major difference from the blackboard model. We shall
use CCPδ (f) to denote the multiparty communication complexity of computing
a decomposable function f in private messages model with error rate at most δ.

The transcript of the `th player is the union of all messages sent by player
` and is denoted by Π`(X). The transcript Π(X) is the union of Π`(X) for
1 ≤ ` ≤ m. We sometimes abbreviate these notations with Π` and Π. The
communication complexity CCPδ = minP∈Γδ maxx∈{0,1}T |Π(x)|.

Random Partitioned Communication Games: An allocation is a function σ :
[T ] 7→ [m]. Let [m]T denote the set of all allocations. In a random partitioned
communication game with respect to function f and a distribution Σ on [m]T ,
an allocation σ is drawn from distribution Σ, and each input bit xi is given to the
σ(i)th player. The players then play a communication game in private messages



model to compute the function value of f for the given input. Let UT,m denote
the uniformly random distribution over [m]T . The special case when Σ = UT,m
is of particular interest in proving robust communication complexity and space
lower bounds for various functions.

We shall use Γδ,Σ to denote the set of protocols whose error rate is at most δ
in the random partitioned communication game with respect to function f and
distribution Σ. And the communication complexity in a random partitioned
communication game is CCPδ,Σ = minP∈Γδ,Σ maxx∈{0,1}T |Π|.

3 Revisiting the Direct Sum Theorem

Now we revisit the definition of information cost and information complexity
in the literature of private messages model. A major difference between private
messages model and blackboard model is that a player may need to forward
information in the messages she received to the other players, while in blackboard
model that information is already known by every player.

Therefore, any optimal protocol in blackboard model shall satisfies that
I(Πi;Πj) = 0 for any 1 ≤ i 6= j ≤ m. Thus we shall have that I(X;Π) =∑m
i=1 I(X;Πi). However, similar statement is not true in private messages model.

Based on this observation, we consider the following definition of information
cost and information complexity in private messages model.

Definition 4. Suppose P is a communication protocol and Π is its transcript.
The information cost of P with respect to the input distribution X ∼ µ is
ICostµ(X;Π) =

∑m
i=1 Iµ(X;Πi). The δ-error information complexity with

respect to function f and input distribution X ∼ µ is the minimal information
cost among all δ-error protocols, that is, ICµ,δ(f) = minP∈Γδ ICostµ(X;Π).

Similar to the results in blackboard model, we sometimes need to consider
the conditional information cost and conditional information complexity, which
are defined as follows.

Definition 5. The conditional information cost of a protocol P with respect to
distribution X ∼ µ and Y ∼ ζ is ICostµ,ζ(X;Π|Y ) =

∑m
i=1 Iµ,ζ(X;Πi|Y ).

The δ-error conditional information complexity with respect to function f and
distribution X ∼ µ and Y ∼ ζ is ICµ,ζ,δ(f |Y ) = minP∈Γδ ICostµ(X;Π|Y ).

Given the modified definition of information cost and information complexity,
we now rephrase the direct sum theorem in the context of private messages model
as follows.

Theorem 1 (Direct Sum Theorem). Recall that f : {0, 1}T 7→ {0, 1} is
a decomposable function with primitive function h : {0, 1}t 7→ {0, 1}. Suppose
the input distribution X ∼ µ = νn is a collapsing distribution and random
variable Y ∼ ζ = ηn partitions X. Consider a random partitioned communica-
tion game with respect to function f and distribution Σ, then ICµ,ζ,δ,Σ(f |Y ) ≥∑n
i=1 ICν,η,δ,Σ(h|Yi) .



The proof of Theorem 1 is an analogue of the proof by Bar-Yossef et. al. [3],
and can be found in Appendix A.

4 Near Optimal Lower Bound for Frequency Moments

In this section, we will prove the following asymptotically optimal space lower
bound for computing the kth frequency moments for k > 2.

Theorem 2. Suppose ε and δ are small constants. If an algorithm correctly
gives a (1 + ε)-approximation of the kth frequency moment of n numbers with
probability at least 1−δ in a random order stream within ` passes, then the space
it needs is at least Ω

(
n1−2/k/`

)
.

We consider the decomposable function SetDisjn,t. The intuition is the fol-
lowing. Suppose m = td and we shall assume that m is large enough such that
if the allocation σ ∼ Ut,m, then with probability 1 − o(1) we have σ(i) 6= σ(j)
for all 1 ≤ i 6= j ≤ t. Consider a collapsing and symmetric distribution X ∼ ν
partitioned by Y ∼ η, where η is a uniform distribution over [t] and conditioned
on Yi = j we have Xi = ej with probability 1/2 and Xi = 0 with probability
1/2. From Theorem 1, it suffices to prove lower bound for the primitive function.
Recall that the information complexity for Andt is at least ICB = Ω(1/t) in
a blackboard fixed-partition t-player communication game with respect to this
input distribution [7, 9]. Conditioned on a particular allocation σ, suppose the
indexes of the players who get the t bits of the input Xi are i1 < i2 < · · · < it.
We can imagine that these t players play a communication game to compute the
function value of Andt and only the messages these t players receive contribute
to the information cost. So the effective information cost is

I(Xi;Πi1−1|Yi) + I(Xi;Πi2−1|Yi) + · · ·+ I(Xi;Πit−1|Yi) .

Now we use the simple fact that the information cost in private messages
model is at least as large as the information cost in blackboard model. We get
that the above information cost is at least ICB . Note that for each 1 ≤ ` ≤ t,
player i` + 1, i` + 2, · · · , i`+1 − 1 do not have any bit of the input Xi, we have

I(Xi;Πi` |Yi) ≥ I(Xi;Πi`+1|Yi) ≥ · · · ≥ I(Xi;Πi`+1−1|Yi) .

Since the expected distance between ij and ij+1 is d, the next lemma is
intuitive.

Lemma 1. Suppose Xi ∼ ν is a collapsing symmetric distribution partitioned
by Yi ∼ η, then the information cost of computing the function value of Andt
with small constant error rate δ is at least IC(Andt|Yi) = Ω(d/t).

Now we formally prove this key lemma. Given an allocation σ : [t] → [m],
m = td, let σ(`) be the image of `, and π(`) be the smallest σ(`′) such that `′ ∈
[t]\{`} and σ(`′) ≥ σ(`) (if σ(`) = max`′∈[t] σ(`′) then π(`) = min`′∈[t] σ(`′)+m).
Let pj denote the probability that π(`)−σ(`) = j when σ ∼ Ut,m. We have pj =
(t/m) (1− j/m)t−1 = (1− j/m)t−1

/d. We first prove the following lemmas.



Lemma 2. For any 0 ≤ i < j ≤ m− 1,

pj(pi + pi+1 + · · ·+ pm−1) ≥ pi(pj + pj+1 + · · ·+ pm−1) .

Proof. Consider the function p(x) = (1 − x)t−1/d. It is easy to verify that this
function is log-concave. Note that i < j and i ≤ i+ k < j + k for k ≥ 0, we get
that pjpi+k ≥ pipj+k and thus pi+k/pi ≥ pj+k/pj . So

pi + pi+1 + · · ·+ pm−1

pi
≥ pi + pi+1 + · · ·+ pi+m−j−1

pi
≥ pj + pj+1 + · · ·+ pm−1

pj
.

�

Lemma 3. If c1 ≥ c2 ≥ · · · ≥ cm−1 ≥ 0, then

m−1∑
i=1

m−1∑
j=i

pjci ≥
m−1∑
i=1

ipi

m−1∑
j=1

pjcj .

Proof. Note
m−1∑
j=1

pj = 1. Now,

m−1∑
i=1

m−1∑
j=i

pjci −
m−1∑
i=1

ipi

m−1∑
j=1

pjcj =
m−1∑
j=1

j∑
i=1

pjci −
m−1∑
i=1

ipi

m−1∑
j=1

pjcj

=
m−1∑
i=1

m−1∑
j=1

i∑
`=1

pipjc` −
m−1∑
i=1

m−1∑
j=1

i∑
`=1

pipjcj

=
m−1∑
i=1

m−1∑
j=1

i∑
`=1

pipj(c` − cj) =
m−1∑
j=1

m−1∑
`=1

m−1∑
i=`

pipj(c` − cj)

=
∑
`<j

[pj(p` + · · ·+ pm−1)− p`(pj + · · ·+ pm−1)](c` − cj) ≥ 0 .

The last step follows from Lemma 2. �

Proof (of Lemma 1). Suppose P is a δ-error protocol and Π is its transcript. Let
1 ≤ ` ≤ t. Let cj denote the expected communication cost contributed by player
σ(`) + j− 1 if π(`)−σ(`) ≥ j, that is, cj = I(Xi;Πσ(`)+j−1|Yi, π(`)−σ(`) ≥ j).
Since we consider private messages model we shall have that c1 ≥ c2 ≥ · · · ≥
cm−1 ≥ 0. By Lemma 3 we get that

m−1∑
i′=1

ci′
m−1∑
j=i′

pj =
m−1∑
i′=1

m−1∑
j=i′

pjci′ ≥
m−1∑
i′=1

i′pi′
m−1∑
j=1

pjcj . (1)

Note that
∑m−1
j=i′ pj is the probability that π(`) − σ(`) ≥ i′. The left-hand side

of Equation 1 is the communication cost contributed by players σ(`), σ(`) +



1, · · · , π(`) − 1. The first term on the right-hand side
∑m−1
i′=1 i

′pi′ is the ex-
pected distance between σ(`) and π(`), which equals d. The second term on
the right-hand side

∑m−1
j=1 pjcj is the information cost contributed by player

π(`) − 1. So we have
∑π(`)−1
j=σ(`) I(Xi;Πj |Yi) ≥ d · I(Xi;Ππ(`)−1|Yi). Recall that∑t

`=1 I(Xi;Ππ(`)−1|Yi) ≥ ICB = Ω(1/t). We have

ICost(Xi;Π|Yi) =
t∑
`=1

π(`)−1∑
j=σ(`)

I(Xi;Πj |Yi) ≥
t∑
`=1

d·I(Xi;Ππ(`)−1|Yi) = Ω

(
d

t

)
.

Since the above result is true for any δ-error protocol, we prove Lemma 1. �

Remark 1. We realize the reduction technique we introduce in Lemma 1, 2, and
3 works for other decomposable functions if we can prove information complexity
lower bound for some symmetric collapsing input distribution.

Using the direct sum theorem we have the following corollaries.

Corollary 1. If a protocol P correctly computes the value of SetDisjn,t with
probability at least 1 − δ in a random partition communication game, then the
total communication complexity is at least

CC(SetDisjn,t) ≥
n∑
i=1

IC(Andt|Yi) = Ω

(
nd

t

)
= Ω

(nm
t2

)
.

Now we can prove Theorem 2 via the a reduction as follows.

Proof (of Theorem 2). Suppose an algorithm gives (1 + ε)-approximation of the
kth frequency moment using s bits of space and within ` passes. Consider the
following `-round protocol which compute the function value of SetDisjn,t when
t = (5ε · n)1/k. Set m to be large1, m = Ω(t2), which rules out collisions with
constant probability. Each player shall receive some bits of the input. For each
bit of value 1, that indicates some value v in one of the set. And the player
take that as probing a number v in the data stream. The first player runs the
algorithm on the inputs she receives, then sends the s bits of memory and another
O(log n) bits that indicates the number of 1’s she receives to the second player.
The second player continues the algorithm on her own inputs, then sends the
memory bits and the number of 1’s the first two players receive to the third
player. And so on and so forth.

Now assume the number of 1’s in the input is n′, we get that n′ < n + t <
(1 + ε)n. If the function value of SetDisjn,t is 1, then one of the value appears
t times in the data stream. So the frequency moment is at least (n′ − t) + tk =
1 Note that the private communication model allows a large number of players, say

even one corresponding to each input, which is one of the reasons for getting the
improved space lower bounds for streaming algorithms compared to the blackboard
model.



n′ − t + 5ε · n ≥ n′ + 4ε · n > n′(1 + ε)2. On the other hand, if the function
value of SetDisjn,t is 0, then the frequency moment is n′. Therefore, if the last
player claims the function value is 1 if the the frequency moment given by the
algorithm is at least (1 + ε)n′ and claims the function value is 0 otherwise, she
will be correct with probability at least 1− δ.

The total communication complexity of this protocol is O (`m(s+ log n)).
Recall that this value is at least Ω(nm/t2), we get that

s = Ω
( n

t2`

)
= Ω

(
n1−2/k

`

)
.

�

5 Entropy–Space Tradeoff for L∞ and Lp Distances

In this section, we consider the entropy–space tradeoff of finding an nε-approximation
of the L∞ distance.

We consider the following communication game. The two vectors correspond
to 〈x1, x3, . . . , x2n−1〉 and 〈x2, x4, . . . , x2n〉 (we can use any fixed permutation).
There are 2n players. The input allocation σ : [2n] 7→ [2n] is drawn from a
distribution over all permutations of [2n]. The entire input xi is allocated to
player σ(i). The players then communicate in the private messages model in
order to compute the function value of GapDistn,`.

We shall show the following theorems.

Theorem 3. Let δ > 0 be a small constant. Let Σ be a distribution of input
order with entropy E. Any δ-error nε-approximation algorithm for L∞ distances
with respect to input order distribution Σ requires space at least

Ω

(
n1−4ε

2(2n logn−E)/(1−2δ)n

)
.

Theorem 4. Theorem 3 is tight, given E there exists an order distribution Σ′

with entropy at least E, and a δ-error nε-approximation algorithm of L∞ distance
with respect to Σ′, using O

(
n1−4ε

2(2n logn−E)/n

)
space.

Proof (of Theorem 3). We consider the function GapDistn,`. Recall that the
function BiGap` is defined as: BiGap`(x, y) = 1 when |x− y| = ` and BiGap`(x, y) =
0 when |x− y| = 0, 1. The decomposable function GapDistn,` is defined as
GapDistn,` = Orn (BiGap`(x1, x2), · · · ,BiGap`(x2n−1, x2n)). If an algorithm
can correctly compute the L∞ distance of two n dimensional vectors up to a
nε factor, then it shall be able to distinguish whether the L∞ distance is at
most 1 or the L∞ distance is at least n2ε. Therefore, the space needed by such
an algorithm is as large as the space needed to compute the function value of
GapDistn,n2ε with probability at least 1−δ. Hence to prove a space lower bound



for computing the L∞ distances, it suffices to show strong lower bound for the
communication complexity of GapDistn,`.

We shall consider the following input distribution of GapDistn,`. For each
1 ≤ i ≤ n, Yi ∼ η is randomly drawn from [2`]. Conditioned on Yi = 2j + 1,
0 ≤ j < `, X2i−1 = j and X2i is uniformly distributed in {j, j+ 1}. Conditioned
on Yi = 2j, 1 ≤ j ≤ `, X2i−1 is uniformly distributed in {j, j − 1} and X2i = j.
It is clear that X ∼ µ = νn is a collapsing distribution since we always have
the value of each primitive function is BiGap` = 0. Bar-Yossef et. al. [3] shows
the following lower bound for the primitive function BiGap` in the literature of
blackboard model:

Lemma 4 (Lemma 8.2 in [3]). Suppose 0 < δ < 1/4 is a constant, the two-
party communication complexity of computing the function value of BiGap` with
probability 1− δ is ICB = Ω

(
1/`2

)
.

Now we consider the information complexity lower bound for the ith prim-
itive function BiGap` in the private messages model. Suppose player u and
player v receive the input X2i−1 and X2i. Effectively these two players play a
communcation game to compute the primitive function and Πu−1 and Πv−1 are
the effective transcripts. So from Lemma 4 we get that I(X2i−1, X2i;Πu−1) +
I(X2i−1, X2i;Πv−1) = Ω(1/`2). Moreover, we shall have I(X2i−1, X2i;Πu) ≥
I(X2i−1, X2i;Πu+1) ≥ · · · ≥ I(X2i−1, X2i;Πv−1) as well as I(X2i−1, X2i;Πv) ≥
I(X2i−1, X2i;Πv+1) ≥ · · · ≥ I(X2i−1, X2i;Πu−1). So the information cost in pri-
vate messages model is at least Ω(min{|u− v|, n− |u− v|}/`2). If we can prove
with some constant probability the value of min{|u− v|, n−|u− v|} is large and
the protocol correctly gets the function value of BiGap`, then we shall have a
lower bound for the primitive function.

Suppose Ei is the entropy the allocation distribution for the ith primitive
function. We let d′ denote the value n/2(2n log 2n−E1)/(1−2δ) for the sake of con-
venience. We shall prove by contradiction that with probability at least 2δ,
min{|u− v|, n− |u− v|} ≥ d′.

Suppose not. Note that the total number of different allocations for a primi-
tive function σi : [2] 7→ [2n] is 2n(2n−1), and the number of different allocations
such that min{|u− v|, n− |u− v|} ≥ d′ is 2n(2n− 2d′ + 1).

Hence if the probability of getting an allocation σi ∼ Σi satisfying min{|u−
v|, n− |u− v|} ≥ d′ is at most 2δ, then the entropy of distribution is

Ei < 2δ log 2n(2n− 2d′ + 1) + (1− 2δ) log (2n(2n− 1)− 2n(2n− 2d′ + 1))

< 2 log 2n+ (1− 2δ) log
(
d′

n

)
.

Thus we have d > n/2(2 log 2n−Ei)/(1−2δ), a contradiction. Therefore, the in-
formation cost for the ith primitive function is at least

Ω(d′/`2) = Ω
( n

`22(2 log 2n−Ei)/(1−2δ)

)
.



Note that we shall have
∑n
i=1Ei ≥ E and the function 2x is convex. Using

Theorem 1 and Jensen’s inequality we get that

IC(GapDistn,`|Y ) =
n∑
i=1

IC(BiGap`|Yi) ≥ Ω
(

n2

`22(2n logn−E)/(1−2δ)/n

)
.

Therefore, to compute the function value of GapDistn,n2ε or to compute the
L∞ distance of two n-dimensional vectors up to a nε factor, we shall need the
memory space to be

Ω

(
n1−4ε

2(2n logn−E)/(1−2δ)n

)
.

�

Proof (of Theorem 4). We let d denote the value c · n/2(2n logn−E)/n for the
sake of convenience, where c is a large constant, then we shall have log d =
log c+E/n−n log n. Consider the distribution of allocations σ generated by the
following algorithm:

1: Pick a random permutation π of [n].
2: Let σ(2j − 1) = 2π(j)− 1 for 1 ≤ j ≤ n.
3: for all 1 ≤ i ≤ n/d do
4: Pick a random permutation πi of [d]
5: Let σ(2d · i+ 2j) = 2π(d · i+ πi(j)) for 1 ≤ j ≤ d.
6: end for

This allocation distribution is a uniform distribution over n!(d!)n/d different
allocations. So the entropy is n log n+(n/d) ·d log d+O(n) > E for large c. Here
we use the following simple corollary of Stirling’s approximation for factorials.
Lemma 5. Suppose n > 0 is a positive integer, then

log(n!) = n log n+O(n) .

For each allocation in this distribution, the first 2d numbers are the inputs of
d dimensions, and the next 2d numbers are the inputs of another d dimensions,
and so on and so forth. Therefore, we can divide the original problem into n/d
subproblems of computing the L∞ distance for d dimensional vectors. And the
space can be reused for each subproblem. Saks and Sun [14] showed these sub-
problems can be resolve using only O(d/n4ε) space. So we can nε-approximate
the L∞ distance using O(d/n4ε) = O(n1−4ε/2(2n logn−E)/n) of space. �

Using a reduction proposed by Saks and Sun [14] we get the following entropy
space tradeoff for approximating Lp distances.

Theorem 5. Let δ > 0 be a small constant and p > 2. Let Σ be a distribution
of input order with entropy E. Any δ-error nε-approximation algorithm for Lp
distances with respect to input order distribution Σ requires space

Ω

(
n1−2/p−4ε

2(2n logn−E)/(1−2δ)n

)
.
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A Proof Of Theorem 1

We now present a proof of theorem 1. We shall omit some of the subscripts in
the following discussion when it does not cause any confusion.

Lemma 6. Recall that X ∼ µ = νn is a collapsing distribution partitioned by
Y ∼ ζ = ηn. Suppose Π is the transcript of a protocol P, then

ICostµ,ζ(X;Π|Y ) ≥
n∑
i=1

ICostν,η(Xi;Π|Y ) .

Proof. By definition, we have

ICost(X;Π|Y ) =
t∑

j=1

I(X;Πj |Y ) =
t∑

j=1

[H(X|Y )−H(X|Πj ,Y )] .

From the subadditivity of entropy, we have:

H(X|Πj ,Y ) ≤
n∑
i=1

H(Xi|Πj ,Y ) .

On the other hand, the distribution of X given Y is a product distribution and
thus

H(X|Y ) =
n∑
i=1

H(Xi|Πj ,Y ) .

Therefore, we have

ICost(X;Π|Y ) ≥
n∑
i=1

t∑
j=1

H(Xi|Y )−
n∑
i=1

t∑
j=1

H(Xi|Πj ,Y )

=
n∑
i=1

t∑
j=1

[H(Xi|Y )−H(Xi|Πj ,Y )]

=
n∑
i=1

t∑
j=1

I(Xi;Πj |Y )

=
n∑
i=1

ICost(Xi;Π|Y ) .

�

Lemma 7. Suppose Π is the transcript of a protocol P ∈ Γδ. For any 1 ≤ i ≤ n,
recall that Xi ∼ ν and Y ∼ ζ = ηn, then

ICost(Xi;Π|Y ) ≥ IC(h|Yi) .



Proof. Let Y −i denote all of Y except the ith coordinate of Y . Define X−i
similarly. Suppose we fixed Y −i to be y−i. Consider the following protocol Py−i
which computes function h. Given an input z of function h, the players use public
coins to sample the allocation and values of X−i from distribution Σ and µ−i.
Each player may receive some bits of the input z and she treats these bits as the
corresponding bits of xi. The players then play a communication game according
to protocol P. Since the error rate of P is at most δ and the distribution µ is
collapsing distribution, we get that protocol Pi correct computes the function
value h(z) with probability at least 1− δ.

Now suppose that the input Z ∼ ν is partitioned by a random variable
Z ′ ∼ η. It is easy to verify that the joint distribution of Z, Πy−i , and Z ′ is the
same as the joint distribution of Xi, Π, and Yi conditioned on Y −i = y−i. So
we have

ICost(Xi;Π|Yi,Y −i = y−i) = ICost(Z;Πy−i |Z ′)

and thus

ICost(Xi;Π|Y ) = Ey−i [ICost(Xi;Π|Yi,Y −i = y−i)]

= Ey−i
[
ICost(Z;Πy−i |Z ′)

]
≥ Ey−i [IC(h|Yi)]
= IC(h|Yi) .

�

Proof (Proof of Theorem 1). Consider the optimal protocol P with respect to
function f and input distribution µ. From Lemma 6 and 7 we have that

IC(f |Y ) = ICost(X;Π|Y ) ≥
n∑
i=1

ICost(Xi;Π|Y ) ≥
n∑
i=1

IC(h|Yi) .

�

Remark 2. If we consider fixed partition communication games instead of ran-
dom partition communication games, then we can assume the players do not
have the power of using public coins because they can sample the bits of Xi

independently since its distribution conditioned on Yi is a product distribution.
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