158 research outputs found

    Insulin autoantibodies as determined by competitive radiobinding assay are positively correlated with impaired beta-cell function — The Ulm-Frankfurt population study

    Get PDF
    Out of a random population of 4208 non-diabetic pupils without a family history of Type I diabetes 44 (1.05%) individuals had islet cell antibody (ICA) levels greater or equal to 5 Juvenile Diabetes Foundation (JDF) units. 39 of these ICA-positives could be repeatedly tested for circulating insulin autoantibodies (CIAA) using a competitive radiobinding assay. The results were compared with the insulin responses in the intravenous glucose tolerance tests (IVGTT) and with HLA types. Six pupils were positive for CIAA. All of them had complement-fixing ICA, and 5 of them were HLA-DR4 positive. Three of the 6 showed a first-phase insulin response below the first percentile of normal controls. Our data indicate that in population-based studies CIAA can be considered as a high risk marker for impaired beta-cell function in non-diabetic ICA-positive individuals

    Ferric carboxymaltose versus ferrous fumarate in anemic children with inflammatory bowel disease:the POPEYE randomized controlled clinical trial

    Get PDF
    OBJECTIVE: To determine whether intravenous (IV) or oral iron suppletion is superior in improving physical fitness in anemic children with inflammatory bowel disease (IBD).STUDY DESIGN: We conducted a clinical trial at 11 centers. Children aged 8 to 18 with IBD and anemia (defined as hemoglobin (Hb) z-score &lt; -2) were randomly assigned to a single IV dose of ferric carboxymaltose or 12 weeks of oral ferrous fumarate. Primary endpoint was the change in 6-minute walking distance (6MWD) from baseline, expressed as z-score. Secondary outcome was a change in Hb z-score from baseline.RESULTS: We randomized 64 patients (33 IV iron; 31 oral iron) and followed them for 6 months. One month after the start of iron therapy, the 6MWD z-score of patients in the IV group had increased by 0.71 compared with -0.11 in the oral group (P=0.01). At 3- and 6-months follow-up, no significant differences in 6MWD z-scores were observed. Hb z-scores gradually increased in both groups and the rate of increase was not different between groups at 1, 3 and 6 months after initiation of iron therapy (overall P=0.97).CONCLUSION: In this trial involving anemic children with IBD, a single dose of IV ferric carboxymaltose was superior to oral ferrous fumarate with respect to quick improvement of physical fitness. At 3 and 6 months after initiation of therapy, no differences were discovered between oral or IV therapy. The increase of Hb over time was comparable in both treatment groups.TRIAL REGISTRATION: NTR4487 [Netherlands Trial Registry].</p

    Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19

    Get PDF
    The systemic immune response to viral infection is shaped by master transcription fac-tors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs)have been suggested as important regulators of transcription factor activity, their contri-butions to the systemic immunopathologies observed during SARS-CoV-2 infectionhave remained unknown. Here, we employed a targeted single-cell RNA sequencingapproach to reveal lncRNAs differentially expressed in blood leukocytes during severeCOVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alar-min transcription) as a major PU.1 feedback-regulator in monocytes, governing the pro-duction of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockoutand transgene expression, combined with chromatin-occupancy profiling, characterizedPIRATasanucleardecoyRNA,keepingPU.1frombindingtoalarminpromotersandpromoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRATdown-regulation during COVID-19 consequently releases a transcriptional brake, fuelingalarmin production. Alarmin expression is additionally enhanced by the up-regulation ofthe lncRNA LUCAT1, which promotes NF-κB–dependentgeneexpressionattheexpenseof targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncod-ing RNA networks in systemic antiviral responses to SARS-CoV-2 in humans

    IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis

    Get PDF
    IL-17-producing CD8+ (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC-to-TBX21, along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8+ T cells from MS patients. Mechanistically, DMF potentiates the PI3K-AKT-FOXO1-T-BET pathway, thereby limiting IL-17 and RORÎłt expression as well as STAT5-signaling in a glutathione-dependent manner. This results in chromatin remodeling at the Il17 locus. Consequently, T-BET-deficiency in mice or inhibition of PI3K-AKT, STAT5 or reactive oxygen species prevents DMF-mediated Tc17 suppression. Overall, our data disclose a DMF-AKT-T-BET driven immune modulation and suggest putative therapy targets in MS and beyond

    ADAM8 signaling drives neutrophil migration and ARDS severity

    Get PDF
    Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8–/– mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain

    The interaction between practice and performance pressure on the planning and control of fast target directed movement

    Get PDF
    Pressure to perform often results in decrements to both outcome accuracy and the kinematics of motor skills. Furthermore, this pressure-performance relationship is moderated by the amount of accumulated practice or the experience of the performer. However, the interactive effects of performance pressure and practice on the underlying processes of motor skills are far from clear. Movement execution involves both an offline pre-planning process and an online control process. The present experiment aimed to investigate the interaction between pressure and practice on these two motor control processes. Two groups of participants (control and pressure; N = 12 and 12, respectively) practiced a video aiming amplitude task and were transferred to either a non-pressure (control group) or a pressure condition (pressure group) both early and late in practice. Results revealed similar accuracy and movement kinematics between the control and pressure groups at early transfer. However, at late transfer, the introduction of pressure was associated with increased performance compared to control conditions. Analysis of kinematic variability throughout the movement suggested that the performance increase was due to participants adopting strategies to improve movement planning in response to pressure reducing the effectiveness of the online control system

    Acute hunger does not always undermine prosociality

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData Availability: The data that support the findings of this paper are available on the OSF website (https://osf.io/zexd7/?view_only=480593713c904397a033e751a6da7a69).It has been argued that, when they are acutely hungry, people act in self-protective ways by keeping resources to themselves rather than sharing them. In four studies, using experimental, quasi-experimental, and correlational designs (total N = 795), we examine the effects of acute hunger on prosociality in a wide variety of non-interdependent tasks (e.g. dictator game) and interdependent tasks (e.g. public goods games). While our procedures successfully increase subjective hunger and decrease blood glucose, we do not find significant effects of hunger on prosociality. This is true for both decisions incentivized with money and with food. Metaanalysis across all tasks reveals a very small effect of hunger on prosociality in noninterdependent tasks (d = .108), and a non-significant effect in interdependent tasks (d = -0.076). In study five (N = 197), we show that, in stark contrast to our empirical findings, people hold strong lay theories that hunger undermines prosociality.Volkswagen Foundatio
    • …
    corecore