41 research outputs found

    Astrocytic 4R tau expression drives astrocyte reactivity and dysfunction

    Get PDF
    The protein tau and its isoforms are associated with several neurodegenerative diseases, many of which are characterized by greater deposition of the 4-repeat (4R) tau isoform; however, the role of 4R tau in disease pathogenesis remains unclear. We created antisense oligonucleotides (ASOs) that alter the ratio of 3R to 4R tau to investigate the role of specific tau isoforms in disease. Preferential expression of 4R tau in human tau-expressing (hTau-expressing) mice was previously shown to increase seizure severity and phosphorylated tau deposition without neuronal or synaptic loss. In this study, we observed strong colocalization of 4R tau within reactive astrocytes and increased expression of pan-reactive and neurotoxic genes following 3R to 4R tau splicing ASO treatment in hTau mice. Increasing 4R tau levels in primary astrocytes provoked a similar response, including a neurotoxic genetic profile and diminished homeostatic function, which was replicated in human induced pluripotent stem cell-derived (iPSC-derived) astrocytes harboring a mutation that exhibits greater 4R tau. Healthy neurons cultured with 4R tau-expressing human iPSC-derived astrocytes exhibited a higher firing frequency and hypersynchrony, which could be prevented by lowering tau expression. These findings support a potentially novel pathway by which astrocytic 4R tau mediates reactivity and dysfunction and suggest that astrocyte-targeted therapeutics against 4R tau may mitigate neurodegenerative disease progression

    Congenital nephrotic syndrome

    Get PDF
    Congenital nephrotic syndrome (CNS) is a rare kidney disorder characterized by heavy proteinuria, hypoproteinemia, and edema starting soon after birth. The majority of cases are caused by genetic defects in the components of the glomerular filtration barrier, especially nephrin and podocin. CNS may also be a part of a more generalized syndrome or caused by a perinatal infection. Immunosuppressive medication is not helpful in the genetic forms of CNS, and kidney transplantation is the only curative therapy. Before the operation, management of these infants largely depends on the magnitude of proteinuria. In severe cases, daily albumin infusions are required to prevent life-threatening edema. The therapy also includes hypercaloric diet, thyroxin and mineral substitution, prevention of thrombotic episodes, and prompt management of infectious complications. The outcome of CNS patients without major extrarenal manifestations is comparable with other patient groups after kidney transplantation

    Genetics of focal segmental glomerulosclerosis

    Get PDF
    The recent advances in understanding the pathophysiology of focal segmental glomerulosclerosis (FSGS) and molecular function of glomerular filtration barrier come directly from genetic linkage and positional cloning studies. The exact role and function of the newly discovered genes and proteins are being investigated by in vitro and in vivo mechanistic studies. Those genes and proteins interactions seem to change susceptibility to kidney disease progression. Better understanding of their exact role in the development of FSGS may influence future therapies and outcomes in this complex disease

    Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic <it>in situ </it>screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models.</p> <p>Results</p> <p>To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section <it>in situ </it>hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs.</p> <p>Conclusion</p> <p>The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.</p

    Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts

    Get PDF
    Peer reviewe

    No evidence of association between 118A&gt;G OPRM1 polymorphism and heroin dependence in a large Bulgarian case-control sample

    No full text
    The µ-opioid receptor is the primary site of action of most opioids. The 118A>G (rs1799971) polymorphism in exon 1 of the µ-opioid receptor gene (OPRM1) leads to an Asn40Asp amino acid change that affects a putative N-glycosylation site. It has been widely investigated for association with alcohol and drug dependence and pain sensitivity, with mixed results. The aim of the current study was to examine whether this polymorphism was associated with heroin dependence in a large Bulgarian cohort of 1842 active users and 1451 population controls. SNP genotyping was done using Real-Time PCR TaqMan technology. Association analyses were conducted, separately for Roma and non-Roma participants. Our results suggest that there is no direct effect of 118A>G genotype on the risk for heroin dependence among active heroin users

    Heavy metal concentrations in Mullus barbatus and Pagellus erythrinus in relation to body size, gender, and seasonality

    No full text
    Marine environments have been subjected to an increase in heavy metal pollution. Investigations were conducted in the bioaccumulation of heavy metals for both a benthic (Mullus barbatus) and a benthopelagic fish species (Pagellus erythrinus). The aim of this study was to examine the concentration levels of four metals in the body tissue of two fish species, in Pagasitikos Gulf in Greece, and to determine if metal concentration levels were affected by season, size, and species. Fish samples were collected monthly from September 2009 to August 2010. Chromium (Cr), Copper (Cu), Zinc (Zn), and Cadmium (Cd) concentrations were measured in muscle, gills, vertebral column, and in the "remaining fish sample." Statistical analysis pinpointed substantial differences in metal concentration levels between some size classes. Significant differences were observed between two fish species' tissues concerning Cu, Zn, and Cd concentrations. Cu and Zn concentrations varied amongst red mullet tissues as did Zn and Cd concentrations in common pandora. Ample variations were found seasonally in metal concentration levels; however, nonsignificant statistical differences were found among sexes
    corecore