578 research outputs found

    Influence of surfactants on the structure of titanium oxide gels : experiments and simulations

    Full text link
    We report here on experimental and numerical studies of the influence of surfactants on mineral gel synthesis. The modification of the gel structure when the ratios water-precursor and water-surfactant vary is brought to the fore by fractal dimension measures. A property of {\em polydispersity of the initial hydrolysis} is proposed to explain these results, and is successfuly tested through numerical experiments of three dimensional chemically limited aggregation.Comment: 12 pages, 4 Postscript figures, uses RevTe

    Current-induced highly dissipative domains in high Tc thin films

    Full text link
    We have investigated the resistive response of high Tc thin films submitted to a high density of current. For this purpose, current pulses were applied into bridges made of Nd(1.15)Ba(1.85)Cu3O7 and Bi2Sr2CaCu2O8. By recording the time dependent voltage, we observe that at a certain critical current j*, a highly dissipative domain develops somewhere along the bridge. The successive formation of these domains produces stepped I-V characteristics. We present evidences that these domains are not regions with a temperature above Tc, as for hot spots. In fact this phenomenon appears to be analog to the nucleation of phase-slip centers observed in conventional superconductors near Tc, but here in contrast they appear in a wide temperature range. Under some conditions, these domains will propagate and destroy the superconductivity within the whole sample. We have measured the temperature dependence of j* and found a similar behavior in the two investigated compounds. This temperature dependence is just the one expected for the depairing current, but the amplitude is about 100 times smaller.Comment: 9 pages, 9 figures, Revtex, to appear in Phys. Rev.

    Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models

    Get PDF
    High-resolution, ground-based and independent observations including co-located windradiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulationmodels and data-constrained assimilation systems in the middle atmosphere at northern hemispheremidlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range WeatherForecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2,the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and thefree-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out inboth temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and windradiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviationsincrease with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, thestandard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. Thelargest deviations are observed in winter when the variability from large-scale planetary waves dominates.Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. Atshorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a generalgood agreement with ECWMF wind and temperature products. As such, this study demonstrates the potentialof the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integratesvarious measurements and provides a quantitative understanding of stratosphere-troposphere dynamicalcoupling for numerical weather prediction applications

    The development and validation of an actuarial risk assessment tool for the prediction of first-time offending

    Get PDF
    For prevention purposes, it is important that police officers can estimate the risk for delinquency among juveniles who were involved in a criminal offense, but not in the role of a suspect. In the present study, the Youth Actuarial Risk Assessment Tool for First-Time Offending (Y-ARAT-FO) was developed based solely on police records with the aim to enable Dutch police officers to predict the risk for first-time offending. For the construction of this initial screening instrument, an Exhaustive Chi-squared Automatic Interaction Detector (Exhaustive CHAID) analysis was performed on a data set that was retrieved from the Dutch police system. The Y-ARAT-FO was developed on a sample of 1,368 juveniles and validated on a different sample of 886 juveniles showing moderate predictive accuracy in the validation sample (area under the receiver operating characteristic curve [AUC] = .728). The predictive accuracy of the Y-ARAT-FO was considered sufficient to justify its use as an initial screening instrument by the Dutch police
    corecore