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Abstract Applying a multilevel approach to meta-analysis is a strong method for dealing with

dependency of effect sizes. However, this method is relatively unknown among researchers and,

to date, has not been widely used in meta-analytic research. Therefore, the purpose of this tuto-

rial was to show how a three-level random effects model can be applied to meta-analytic models

in R using the rma.mv function of the metafor package. This application is illustrated by taking

the reader through a step-by-step guide to the multilevel analyses comprising the steps of (1) orga-

nizing a data file; (2) setting up the R environment; (3) calculating an overall effect; (4) examining

heterogeneity of within-study variance and between-study variance; (5) performing categorical and

continuous moderator analyses; and (6) examining a multiple moderator model. By example, the

authors demonstrate how the multilevel approach can be applied to meta-analytically examining

the association between mental health disorders of juveniles and juvenile offender recidivism. In

our opinion, the rma.mv function of the metafor package provides an easy and flexible way of ap-

plying a multi-level structure to meta-analytic models in R. Further, the multilevel meta-analytic

models can be easily extended so that the potential moderating influence of variables can be exam-

ined.
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Introduction
The term meta-analysis refers to a stepwise procedure

and a set of statistical techniques for combining results

of independent primary studies, so that overall conclu-

sions regarding a specific topic can be drawn. In general,

the meta-analytic process can be divided into the follow-

ing steps: (1) formulating a research problem; (2) search-

ing for relevant primary studies; (3) retrieving informa-

tion from the primary studies; (4) integrating the retrieved

information in statistical analyses; and (5) interpreting

the results from the analyses and drawing overall conclu-

sions. In this tutorial, we specifically focus on the statis-

tical analyses in meta-analytic research (the fourth step

mentioned above). Throughout the years, a large num-

ber of books have been written on meta-analysis and for

a comprehensive overview of all aspects involved in meta-

analytic research, we refer the reader to thework of Boren-

stein, Hedges, Higgins, and Rothstein (2009), Cooper (2010),

Hunter and Schmidt (2004), Lipsey and Wilson (2001) and

Mullen (1989).

After a research problem has been formulated and the

search procedure for relevant primary studies has been

finished, it is time for the research synthesist to retrieve in-

formation from all primary studies in a coding procedure.

In essence, there are two aspects to coding studies: coding

information about empirical findings reported in primary

studies that can be expressed in effect sizes (i.e., the depen-

dent variable), and the coding of factors, such as study de-

sign, ethnicity of the sample, and type of instruments used,

that may influence the nature andmagnitude of the empir-

ical findings (i.e., the independent variables) (Lipsey &Wil-

son, 2001). For integrating empirical findings reported in

primary studies, it is necessary that each empirical finding
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on a topic of interest is expressed in an effect size, which

Cohen (1988) has defined as a quantitative indication of the

degree to which [a] phenomenon is present in the population
(pp. 9 – 10). The larger the value, the greater the degree

to which a phenomenon is present, or in other words, the

larger the effect. Common metrics for effect size are the

standardized difference between themean of two different

groups (Cohen’s d), the correlation coefficient (r or Fisher’s
Z when transformed), and the odds-ratio.
An important requirement in traditional univariate

meta-analytic approaches is that there is no dependency

between effect sizes in the data set that is to be analyzed

(e.g., Rosenthal, 1984). If there is dependency between ef-

fect sizes (i.e., effect sizes are correlated), there is overlap

in information to which correlated effect sizes are refer-

ring to. In this way the available information is ‘inflated’

and consequently leads to an overconfidence in the re-

sults of a meta-analysis (Van den Noortgate, Lòpez-Lòpez,

Mar̀ın-Mart̀ınez, & Sànchez-Meca, 2013). Lipsey and Wil-

son (2001) emphasize that for meeting the requirement of

non-independency, only one effect size per primary study

should be included. After all, it is likely that effect sizes

extracted from the same study are more alike (and thus

interdependent) than effect sizes extracted from different

studies, because the former may be based on the same par-

ticipants, instruments, and/or circumstances in which the

research was conducted (Houben, Van den Noortgate, &

Kuppens, 2015).

Different solutions for dealing with dependency of ef-

fect sizes have been described in the literature (see, for

instance, Borenstein et al., 2009; Cooper, 2010; Del Re,

2015; Hedges & Olkin, 1985; Lipsey & Wilson, 2001; Rosen-

thal, 1984; Schmidt & Hunter, 2015). Common methods for

handling dependency of effect sizes are: simply ignoring

the dependency and analyzing the effect sizes as if they

were independent; averaging the dependent effect sizes

within studies into a single effect size by calculating an

unweighted or - less biased - weighted average; selecting

only one effect size per study (also referred to as elimi-

nating effect sizes); and shifting the unit of analysis mean-

ing that one unit of analysis is selected after which effect

sizes are averaged within each unit. Some of these meth-

ods are quite conservative, whereas others produce more

accurate effect sizes. Cheung (2015) presents a more de-

tailed overview of these strategies and their limitations in

his book on applying a structural equation modeling ap-

proach to meta-analysis.

When averaging or eliminating effect sizes in primary

studies, there may not only be the problem of a lower sta-

tistical power in the analyses due to information loss, but

also the problem of a limit in the research questions that

can be addressed in a meta-analytic research project (Che-

ung, 2015). After all, informative differences between ef-

fect sizes are lost and can no longer be identified in the

analyses. In addition, Cheung notes that extracting a sin-

gle effect size from each primary study implies that homo-

geneity of effect sizes within studies is assumed, which is,

in most instances, a questionable assumption. By stepping

away from the traditional univariate approach to meta-

analysis, it becomes possible to deal with dependency of

effect sizes in such a way that a research synthesist can

extract all relevant effect sizes from each primary study

without needing to reduce the number of effect sizes in

any way. By performing the analyses using all relevant ef-

fect sizes, all information can be preserved and maximum

statistical power can be achieved. In addition, there is no

assumption of homogeneity of effect sizes within studies.

Applying a three-level structure to a meta-analytic

model (Cheung, 2014; Hox, 2010; Van den Noortgate et al.,

2013, 2014) is a better approach for dealing with depen-

dency of effect sizes than themethods just mentioned. This

three-level meta-analytic model considers three different

variance components distributed over the three levels of

the model: sampling variance of the extracted effect sizes

at level 1; variance between effect sizes extracted from the

same study at level 2; and variance between studies at level

3. In short, this model allows effect sizes to vary between

participants (level 1), outcomes (level 2), and studies (level

3). Contrary to several other statistical techniques, themul-

tilevel approach does not require the correlations between

outcomes reported within primary studies to be known for

estimating the covariance matrix of the effect sizes, since

the second level in the above described three-level meta-

analytic model accounts for sampling covariation (Van den

Noortgate et al., 2013). Because (estimates of) correlations

between outcomes are rarely reported in primary stud-

ies and therefore difficult to obtain, the use of multilevel

models in meta-analytic research is a very practical way

to account for interdependency of effect sizes. Further,

the three-level approach allows examining differences in

outcomes within studies (i.e., within-study heterogeneity)

as well as differences between studies (i.e., between-study

heterogeneity). If there is evidence for heterogeneity in

effect sizes, moderator analyses can be conducted to test

variables that may explain within-study or between-study

heterogeneity. For these analyses, the three-level random

effects model can easily be extended with study and effect

size characteristics, making the model a three-level mixed

effects model.

Despite the fact that using multilevel modeling in meta-

analysis is a strong method for dealing with interdepen-

dency of effect sizes, it is a rather unknownmethod among

scholars and has not been widely applied yet in meta-

analytic research. Therefore, the main purpose of this tu-
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torial is to show how the above described three-level struc-

ture can be applied to meta-analytic models. For this pur-

pose, we use the rma.mv function of the metafor package

(Viechtbauer, 2015), which can be invoked in the statistical

software environment R (R Development Core Team, 2016).

Themetafor packagewaswritten byWolfgang Viechtbauer

and comprises a large set of functions for conductingmeta-

analyses. One of the many features of this flexible R pack-

age is that it allows users to fit a variety of meta-analytic

models in which different approaches to analysis can be

used. The rma.mv function is part of this package and

makes it possible to fitmultilevelmeta-analyticmodels that

can be extended by including moderators. To illustrate

how a three-level random effects meta-analytic model can

be set up using the rma.mv function in the R environment,

we will present an example of meta-analytic research on

the association between mental health disorders and ju-

venile offender recidivism, which was adapted from the

work of Wibbelink, Hoeve, Stams, and Oort (2016). The

reader will be guided through this example in a stepwise

manner. First, we will illustrate how a data set should

be organized and how the R environment should be set

up. Second, we will demonstrate how an overall effect

can be estimated using a three-level meta-analytic model.

Third, we will discuss within-study heterogeneity as well

as between-study heterogeneity, and fourth, we will illus-

trate the steps that are involved in performing amoderator

analysis. Lastly, we will show how moderators can be ana-

lyzed jointly in one multiple moderator model, in order to

examine the unique contribution of moderators.

Example: The association betweenmental health disor-
ders of juveniles and juvenile offender recidivism
In their meta-analytic study, Wibbelink et al. (2016) fo-

cused on associations between mental health disorders of

delinquent juveniles and subsequent delinquent behavior

of those juveniles (i.e., recidivism). More specifically, the

first aim of the study was to meta-analytically estimate an

overall association between mental health disorders of ju-

veniles and recidivism, since there are considerable dif-

ferences in the associations found in primary studies. By

statistically summarizing primary studies, better insight is

provided in the true association between mental health

disorders of juveniles and recidivism. Because primary

studies differ from each other in several ways (e.g., dif-

ferences in the way recidivism is defined, differences in

assessing recidivism, and differences in methodological

characteristics), a second aim of the study was to examine

whether (and how) the association between mental health

disorders of juveniles and recidivism is moderated by a

number of variables. For the present tutorial, we used a

subset of the data set that Wibbelink and colleagues used

in their meta-analytic study.

Organizing the data file
Prior to analyzing the effect sizes in a data set, it is first im-

portant to properly organize a data file, so that the three-

level meta-analytic models can be built in the R environ-

ment. An excerpt of the data file that is used in the ex-

ample described in the present tutorial is shown in Table

1. From this table, it can be derived that each row rep-

resents one effect size extracted from one primary study.

The first four columns from the left represent the variables

that are mandatory to create in order to properly build the

three-level meta-analytic models. In the first column, each

independent study is designated with a unique identifier

in the variable studyID, and in the second column, each
extracted effect size is designated with a unique identifier

in the variable effectsizeID. As can be seen in the ta-
ble, six effect sizes were extracted from study 1, three ef-

fect sizes from study 2, six effect sizes from study 3, one

effect size from study 11, one effect size from study 12, and

two effect sizes from study 16. The variable labeled y con-
tains all actual effect sizes, and in this example, all effects

are expressed in Cohen’s d (but other metrics for the ef-
fect size, such as Fisher’s z, can also be analyzed with the
rma.mv function of the metafor package). Each effect size

represents the difference in recidivism rates between ju-

veniles with a mental health disorder and a comparison

group of juveniles without amental health disorder. A pos-

itive value of Cohen’s d indicates that the prevalence of re-
cidivism is higher in the group of juveniles with a mental

health disorder relative to the comparison group, whereas

a negative value of Cohen’s d is indicative of the opposite.
According to the criteria formulated by Cohen (1988), d val-
ues of .2, .5, and .8 can be interpreted as small, moderate,

and large effects, respectively. The variable labeled v con-
tains the sampling variance that corresponds with the ob-

served effect size in the variable y and can be obtained by
squaring the standard error.

The other variables that are part of the data set are

tested in moderator analyses as potential moderators of

the overall association between juveniles with a mental

health disorder and recidivism. In our example, the poten-

tial moderators that will be examined are (1) publication

status of the primary study; (2) type of delinquent behav-

ior in which juveniles have recidivated; and (3) the year

in which a primary study was published. Prior to testing

categorical variables as potential moderators of the over-

all effect, we created a dummy variable for each category

of a categorical variable (see Table 1). At first glance, it

may seem redundant to create a dummy variable for each

of the categories rather than for only the categories that

are tested against a reference category (i.e., total number
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Table 1 Excerpt of the Data Set Used in the Present Example.

studyID effectsizeID y v pstatpub pstatnotpub typegen typeovert typecovert pyear

1 1 .9066 .0740 1 0 1 0 0 5

1 2 .4295 .0398 1 0 1 0 0 5

1 3 .2679 .0481 1 0 1 0 0 5

1 4 .2078 .0239 1 0 1 0 0 5

1 5 .0526 .0331 1 0 1 0 0 5

1 6 -.0507 .0886 1 0 1 0 0 5

2 7 .5117 .0115 1 0 1 0 0 2

2 8 .4738 .0076 1 0 1 0 0 2

2 9 .3544 .0065 1 0 1 0 0 2

3 10 2.2844 .3325 1 0 1 0 0 -9

3 11 2.1771 .3073 1 0 1 0 0 -9

3 12 1.7777 .2697 1 0 1 0 0 -9

3 13 1.5480 .4533 1 0 1 0 0 -9

3 14 1.4855 .1167 1 0 1 0 0 -7

3 15 1.4836 .1706 1 0 1 0 0 -7

11 59 .8615 .1591 0 1 0 1 0 -7

12 63 .2994 .0041 0 1 0 1 0 5

16 93 -.5675 .0340 1 0 0 0 1 3

16 94 -.7586 .0437 1 0 0 0 1 3

Note. The data set used in the present example was based on the data set created by Wibbelink, Hoeve, Stams, and
Oort (2016). studyID = Unique identifier for each primary study; effectsizeID = Unique identifier for each effect size;

y = Variable containing all effect sizes; v = Variable containing all sampling variances; pstatpub = Published primary

studies (0 = not published; 1 = published); Pstatnotpub = Unpublished primary studies (0 = published; 1 = unpublished);

typegen = General delinquency; typeovert = Overt delinquency; typecovert = Covert delinquency. All variables are ex-

plained in the text.

of categories – 1). However, we were not only interested

in the mean effect of a reference category, but also in the

mean effect (including significance and confidence inter-

val) of the other categories that are tested against a ref-

erence category. In order to obtain these results, we cre-

ated a dummy variable for each category of a discrete vari-

able that is tested as a potential moderator. We will fur-

ther elaborate on this in the section on moderator analy-

ses. So, in our example, we created two dummy variables

for publication status and three dummy variables for type

of delinquency. In the dichotomous variable pstatpub, it
was coded whether a primary study was published or not

(1 = published; 0 = not published). The dichotomous vari-

able pstatnotpub was created by inverting the values
of the variable pstatpub, so that 0 is indicative of a pub-
lished study and 1 is indicative of an unpublished study.

Both variables aremutually exclusive, as can be seen in Ta-

ble 1. In the variables typegen (i.e., general delinquent
behavior), typeovert (i.e., overt delinquent behavior),
and typecovert (i.e., covert delinquent behavior). The
value 1 in these three dummy variables is indicative of the

specific type of delinquency being applicable, whereas the

value 0 indicates that the specific type of delinquency is

not applicable. Once again, these dummy variables are

mutually exclusive. The publication year of a study was

regarded as a continuous variable and after the publica-

tion year of all primary studies was coded, the variable was

centered around its mean. The results were stored in the

variable pyear (see Table 1). Prior to the analyses (but not
visible in Table 1), it was checked whether outlying effect

sizes were present in the data set by screening for stan-

dardized z values larger than 3.29 or smaller than -3.29

(Tabachnik & Fidell, 2013). In case of missing values in the

variables that were to be tested as potential moderators,

the cells were left empty (i.e., systemmissing values which

are not visible in Table 1). Note that the data set used in

the present example can be downloaded as a comma sep-

arated values file (named dataset.csv) from the jour-
nal’s website.

Setting up the R environment
The statistical software environment R (we recommend at

least version 3.2.2) can be downloaded from the following

websites:

http://cran.r-project.org/bin/windows/base/ (for Windows);

http://cran.r-project.org/bin/macosx/ (for OS X).

The Quantitative Methods for Psychology 157f

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.12.3.p154


¦ 2016 Vol. 12 no. 3

R provides a basic graphical user interface, but it is

rather easy to install a more productive developmental en-

vironment for R (such as RStudio), if desired by the user.

After installing R, the user needs to define a working direc-

tory in which syntax, data, and other files can be found by

the R environment. This can be done by running the syn-

tax in Listing 1. Note that all syntax should be entered at

the command prompt (>) of the R environment and that all
text after a number sign (#) is considered a comment and
will not be executed by R. Readers who are interested in

replicating our analyses can therefore leave out the com-

ments in the syntaxes presented in this tutorial.

Next, the user needs to install and load the metafor

package that comprises the rma.mv function, whichwill be

invoked later on for building the multilevel meta-analytic

model. Installing and loading the metafor package can be

performed by running the syntax in Listing 2.

Next, the data set needs to be imported into the

R environment. Since our data was saved in the file

dataset.csv, which is in the comma delimited format,
we need to import this file by running the syntax in Listing

3.

In order to check whether the data was correctly im-

ported in the R environment, the user can screen the im-

ported data by invoking several functions in a sequential

order (see the syntax in Listing 4).

Calculating an overall effect
First, the overall association between juveniles with amen-

tal health disorder and recidivism (i.e., the overall ef-

fect) will be estimated by fitting a three-level meta-analytic

model to the data that will only consist of an intercept rep-

resenting the overall effect. For this purpose, we use the

rma.mv function of the metafor package, by running the

syntax in Listing 5.

Below, we will first take a closer look on the elements

of the syntax in Listing 5 that are taken as arguments by

the rma.mv function.
• overall = the name of the object in which the results
of the rma.mv function will be stored. In our example,
we have named this object overall, since we are first
estimating an overall effect;

• y = the name of the variable containing all effect sizes
(which are Cohen’s d values in the present example);

• v = the name of the variable containing all sampling
variances;

• random = the argument that is taken by the rma.mv
function when the user wants to perform a random-

effects meta-analysis. Because the primary studies in

the present meta-analytic example were considered to

be a random sample of the population of studies, we

wanted to perform a random-effects meta-analysis by

invoking the rma.mv function with the random argu-
ment (for more information on the random-effects ap-

proach, see for instance Raudenbush (2009), Van den

Noortgate and Onghena (2003).

• list(~ 1 | effectsizeID, ~ 1 | studyID)
= the element needed for defining the three-level struc-

ture of the meta-analytic model. effectsizeID (i.e.,
the variable containing the unique identifiers of all ef-

fect sizes in the data set) defines the second level of the

three-level model at which the variance between effect

sizes within primary studies is distributed. studyID
(i.e., the variable containing the unique identifiers of

all primary studies in the data set) defines the third

level of the three-level model at which the variance

between studies is distributed. For both grouping vari-

ables (i.e., effectsizeID and studyID) accounts
that the same random effect is assigned to effect sizes

with the same value of the grouping variable (i.e., ef-

fect sizes are not assumed to be independent), whereas

different random effects are assigned to effect sizes

having different values of the grouping variable (i.e.,

effect sizes are assumed to be independent). In this syn-

tax element, the random effects variance is denoted by

~ 1 and is assigned to a grouping variable by the ver-
tical bar (i.e., |). Note that the first level of the model
at which the sampling variance of all extracted effect

sizes is distributed, does not need to be defined in the

syntax. The sampling variance is not estimated in the

meta-analytic model and is considered to be known. In

this example, we will use the formula as given by Che-

ung (2014, pg. 2015) to estimate the sampling variance

parameter at the first level of the model, and we will

return on this issue later on.

• tdist=TRUE = the argument specifying that test

statistics and confidence intervals must be based on the

t-distribution. See below for more information on this
argument.

• data=dataset = the argument describing which ob-
ject contains the data set.

We will now take a closer look at the tdist=TRUE ar-
gument of the syntax. The default settings of the rma.mv
function prescribe that test statistics of individual coeffi-

cients and confidence intervals are based on the normal

distribution (i.e., the Z distribution). Further, the omnibus
test used for testing multiple coefficients in a meta-analytic

model that is extended with potential moderating vari-

ables is, by default, based on the chi-square distribution

with m degrees of freedom (m = number of coefficients

tested in the model, excluding the intercept, if present in

the model). Several scholars showed that using the Z dis-
tribution in assessing the significance of model coefficients

and in building confidence intervals around these coeffi-
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Listing 1 Setting the Working Directory.

# Setting the working directory;
# Mind the forward slashes in the syntax.
setwd("C:/research/meta-analysis/data")

Listing 2 Installing and Loading the Metafor Package.

# Installing and loading the metafor package.
install.packages("metafor")
library(metafor)

cients, may lead to an increase in the number of unjustified

significant results (see, for instance, Li, Shi, & Roth, 1994;

Ziegler, Koch, & Victor, 2001). To reduce this problem, the

user can apply the Knapp and Hartung (2003) adjustment

to the analyses by passing the argument tdist=TRUE to
the rma.mv function.
By applying the Knapp and Hartung’s (2003) adjust-

ment, the calculation of standard errors, p values, and con-
fidence intervals is slightly modified. To be precise, test

statistics of individual coefficients will be based on the t
distribution with k (number of effect sizes) – p (total num-
ber of coefficients in the model including the intercept) de-

grees of freedom. If an omnibus test is performed (only

relevant when testing potential moderating variables by

extending the intercept-only model with predictors), it will

be based on theF distribution inwhich the degrees of free-
dom of the numerator (df1) equals the number of coeffi-

cients in the model, and in which the degrees of freedom

of the denominator (df2) equals k (number of effect sizes)
– p (total number of coefficients in the model including the
intercept). In case the intercept-only model is extended

with only one predictor, the F value of the omnibus test
equals the square of the t value associated with the regres-
sion coefficient of the predictor. The studies of Assink et al.

(2015), Houben et al. (2015) and Weisz et al. (2013) are ex-

amples of published meta-analytic research in which the

Knapp and Hartung adjustment is applied. As for calcu-

lating the degrees of freedom, a Satterthwaite correction

(Satterthwaite, 1946) is sometimes applied when there are

differences in variances of the groups that are to be com-

pared. This often results in fractional degrees of freedom

(see, for instance, Table 2 in the work of Weisz et al., 2013

and Table 2 in the work of Houben et al., 2015). This Sat-

terthwaite correction is not (yet) available in the rma.mv
function, and therefore it cannot be applied when there

are differences in variances between groups. However,

until now, this does not seem problematic, since there is

no empirical evidence available showing that applying the

Satterthwaite correction produces more robust results in

meta-analytic models (Viechtbauer, 2015, personal com-

munication).

The results of fitting a three-level intercept only model

to the data can be printed on screen by running the syntax

in Listing 6. Running this syntax will produce the output

that is shown in Output 1.

We will now proceed with a detailed explanation of

Output 1.

• k = 100; method: REML implies that the data
set comprises 100 effect sizes (i.e., 100 rows in the data

set) and that the REstricted Maximum Likelihood esti-

mation method (REML) is used for estimating the pa-

rameters in the model. It is often possible to choose be-

tween different estimation methods in statistical soft-

ware, and each estimation method has its own advan-

tages and disadvantages. The REML method is in some

ways superior to other methods (see, for instance, Hox,

2010; Viechtbauer, 2005), but has also restrictions (e.g.,

Cheung, 2014; Van den Noortgate et al., 2013). In this

tutorial, we will not further discuss this issue. How-

ever, it is important to note that by using the REML

method, it is not possible to perform a log-likelihood-

ratio test to compare the fit of an intercept-only model

(i.e., a model without predictors) to a model with pre-

dictors (Hox, 2010; Van den Noortgate et al., 2014, for

more information, see).

• Loglik, Deviance, AIC, BIC, AICc are goodness-
of-fit indices for the meta-analytic model and provide

information on how well the model fits the data set. In

this tutorial, we will not further discuss the technical

details of these indices.

• As for the variance components, it can be derived

from the output that 0.112 is the estimated value for
the variance between effect sizes within studies (dis-

tributed at the second level of the model) and that

0.188 is the estimated value for the variance between
studies (distributed at the third level of the model).

The results in the columns nlvls and factor tell
us that the data set comprises 100 effect sizes (factor
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Listing 3 Importing the Data in R.

# Importing data saved in a comma separated values (CSV) file;
# The data file to be imported was named "dataset.csv";
# All data saved in the file "dataset.csv" is read by invoking
# the read.csv function and assigned to a newly created object
# "dataset" by the assignment operator "<-".
dataset <- read.csv("dataset.csv")

Listing 4 Screening the Imported Data.

# Request several descriptive statistics (e.g., mean, median,
# minimum, maximum) of all variables that are part of the data.
summary(dataset)
# Request an overview of the data structure.
str(dataset)
# Request a print of the first six rows of the data set on screen.
head(dataset)

Listing 5 Estimating the Overall Effect.

# Estimate the overall effect by fitting an intercept-only model.
overall <- rma.mv(y, v, random = list(~ 1 | effectsizeID, ~ 1 | studyID), tdist=

TRUE, data=dataset)

Listing 6 Printing the Results on Screen.

# Request a print of the results stored in the object
# ‘‘overall’’ in three digits.
summary(overall, digits=3)

Output 1 Output of Listings 5 - 6.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-73.632 147.264 153.264 161.050 153.517

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.112 0.335 100 no effectsizeID
sigma^2.2 0.188 0.433 17 no studyID

Test for Heterogeneity:
Q(df = 99) = 808.848, p-val <.001
Model Results:
estimate se tval pval ci.lb ci.ub
0.427 0.118 3.604 <.001 0.192 0.662 ***
---
Signif. Codes: 0 ’***’ 0.001 ’**’ ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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effectsizeID) that were extracted from 17 studies
(factor studyID).

• The results of the test for heterogeneity reveal signifi-

cant variation between all effect sizes in the data set,

since the p value is smaller than .001. However, these
results are not very informative, as we are interested

in within-study variance (level 2) as well as between-

study variance (level 3) and not in variance between

all effect sizes in the data set.

• The overall effect can be derived from the Model
Results. More specifically: estimate = the overall
effect size; se = standard error; tval = t value; pval
= p value; ci.lb = lower bound of the confidence in-
terval; and ci.ub = upper bound of the confidence in-
terval.

In our example, we can conclude that the overall asso-

ciation between mental health disorders of juveniles and

recidivism in juvenile delinquency is 0.427 (expressed in

Cohen’s d) with a standard error of 0.118. This overall ef-
fect is significant (t(99) = 3.604, p < .001) and the confidence
interval is 0.192 to 0.662. According to the criteria formu-

lated by Cohen (1988), stating that d = .2, d = .5, and d =
.8 are small, moderate, and large effects respectively, the

overall effect of 0.427 can be regarded as small to moder-

ate.

Determining the significance of the heterogeneity in ef-
fect sizes
To determine whether the within-study variance (level

2) and between-study variance (level 3) is significant,

two separate log-likelihood-ratio tests can be performed.

Preferably, these tests are performed one-sided, since vari-

ance components can only deviate from zero in a positive

direction. In both tests, the null hypothesis states that one

of the variance component equals zero, whereas the al-

ternative hypothesis states that the variance component is

greater than zero. Performing these tests two-sided would

be too conservative (Viechtbauer, 2015, personal commu-

nication). In the output of R, p values are by default re-
ported for two-sided tests and since we are performing

one-sided log-likelihood-ratio tests, we need to divide the

accompanying p values by two.

Heterogeneity of within-study variance (level 2)

Recall from the last output that the variance distributed at

the second level of the three-level model was captured in

the estimated value of 0.112. For testing the significance

of this variance component, we will perform a one-sided

log-likelihood-ratio test. In this test, the fit of the original

model, in which the variance at the levels 2 and 3 are freely

estimated, will be compared to the fit of a model in which

only the variance at level 3 is freely estimated and inwhich

the variance at level 2 will be manually fixed to zero. In

other words, the fit of the original three-level model will be

compared to the fit of a two-level model in which within-

study variance is no longer modeled. By doing so, it is pos-

sible to determine whether it is at all necessary to account

for within-study variance in the meta-analytic model. The

null hypothesis in this test states that the within-study vari-

ance equals zero (H0 : σ2(level2) = 0), whereas the alter-
native hypothesis states that the within-study variance is

greater than zero (Ha : σ2(level2) > 0). If the test re-
sults provide support for rejecting the null hypothesis, we

can conclude that the fit of the original three-level model is

statistically better than the fit of the two-level model, and

consequently, that there is significant variability between

effect sizes within studies. The significance test can be per-

formed by running the syntax in Listing 7.

This syntax closely resembles the syntax for creating

the overall object (see Listing 5), but it has been modified

in two respects:

• modelnovar2 = the name of the object in which the
results of the rma.mv function will be stored. In our
example, we have named this object modelnovar2,
since it will contain a model that has no within-study

variance at level 2;

• sigma2=c(0,NA) = the argument that is taken by the
rma.mv function when the user wants to fix a specific
variance component to a user-defined value. The first

parameter (0) states that the within-study variance is
fixed to zero (i.e., nowithin-study variancewill bemod-

eled), and the second parameter (NA) states that the
between-study variance is estimated.

To perform the actual log-likelihood-ratio test, the syn-

tax in Listing 8 needs to be executed.

By calling the anova function, the fit of the two-level
model named modelnovar2 will be tested against the fit
of the three-level model named overall, which was pre-
viously created (see Listing 5). We will now take a look

at the output generated by the anova function, which is
shown in Output 2.

Output 2 should be interpreted as follows:

• Full represents the three-level model stored in the ob-
ject overall, whereas Reduced represents the two-
level model stored in the object modelnovar2;

• df = degrees of freedom. The reduced model has one
degree less than the full model, since within-study vari-

ance is not present in the reduced model;

• LRT = likelihood-ratio test. In this column, the value of
the test statistic is presented;

• pval = the two-sided p value of the test statistic;
• QE resembles the test for heterogeneity in all effect
sizes in the data set, and the value of the test statistic

is given in this column. Recall that this test is not very
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Listing 7 Building a Two Level-Model without Within-Study Variance.

# Build a two-level model without within-study variance.
modelnovar2 <- rma.mv(y, v, random = list(~ 1 | effectsizeID, ~ 1 | studyID),

sigma2=c(0,NA), tdist=TRUE, data=dataset)

Listing 8 Performing a Likelihood-Ratio-Test.

# Perform a likelihood-ratio-test to determine the
# significance of the within-study variance.
anova(overall,modelnovar2)

informative, as we are interested in both within-study

variance (level 2) and between-study variance (level 3)

in this three-level meta-analytic example. We are not

interested in variance between all effect sizes in the

data set.

Given the results, we can conclude that the within-

study variance is significant, since the fit of the full model

is significantly better than the fit of the reduced model.

Simply put, we found significant variability between effect-

sizes within studies. Note that the two-sided p value is very
small (< .0001) and already smaller than the significance

level of .05, so dividing the p value by two does not change
this conclusion.

Heterogeneity of between-study variance (level 3)

Determining the significance of the between-study vari-

ance proceeds in a similar way. Recall from Output 1 that

the variance distributed at the third level of the three-level

model was captured in the estimated value of 0.188. We

will again perform a one-sided log-likelihood-ratio test, but

now, the fit of the original three-level model will be com-

pared to the fit of a model in which only the variance at

level 2 is freely estimated and in which the variance at

level 3 will be manually fixed to zero. In this last model,

between-study variance is not modeled. The null hypothe-

sis in the test states that the between-study variance equals

zero (H0 : σ2(level3) = 0), whereas the alternative hy-
pothesis states that the between-study variance is greater

than zero (Ha : σ2(level2) > 0). If the null hypothesis
should be rejected based on the test results, we can con-

clude that the fit of the original three-level model is statis-

tically better than the fit of the two-level model, and conse-

quently, that there is significant variability between stud-

ies. The significance test can be performed by running the

syntax in Listing 9.

This syntax has just slightly changed in comparison to

the syntax in Listing 7.

• The object is now named modelnovar3, since we are
determining the significance of the between-study vari-

ance at level 3;

• Sincewewant to fix the between-study variance to zero

and freely estimate the within-study variance, we have

now typed sigma2=c(NA,0);
• In calling the anova function, we have specified that
the fit of the two-level model named modelnovar3
should be tested against the fit of the three-level model

named overall.

After running this syntax, output as shown in Output 3

is generated.

Given the results, we can conclude that the between-

study variance is significant, since the fit of the full model is

significantly better than the fit of the reduced model. Sim-

ply put, we found significant variability between studies.

Note that the two-sided p value is significant (p < .0001), so
dividing this p value by two does not change this conclu-
sion.

In our example, there is significant within-study vari-

ance (at level 2) as well as significant between-study vari-

ance (at level 3). This implies that there is more variabil-

ity in effect sizes (within and between studies) than may

be expected based on sampling variance alone. Therefore,

moderator analyses can be performed in order to examine

variables that may explain within- and/or between-study

variance. However, before turning to moderator analyses,

we will first examine how the total variance is distributed

over the three levels of the meta-analytic model.

The distribution of the variance over the three levels of
the meta-analytic model

Besides testing the significance of the within-study and

between-study variance, it is possible to examine how the

total variance is distributed over the three levels of the

meta-analytic model. Recall that three different sources

of variance are modeled in our meta-analytic model: sam-

pling variance at the first level; within-study variance at

the second level; and between-study variance at the third

level. To determine how much variance can be attributed

to differences between effect sizes within studies (level
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Output 2 Output of Listings 7 - 8.

df AIC BIC AICc logLik LRT pval QE
Full 3 153.264 161.049 153.517 -73.632 808.8482
Reduced 2 233.156 238.347 233.347 233.281 81.8923 <.0001 808.8482

Listing 9 Determining the Significance of Between-Study Variance.

# Build a two-level model without between-study variance;
# Perform a likelihood-ratio-test to determine the
# significance of the between-study variance.
modelnovar3 <- rma.mv(y, v, random = list(~ 1 | effectsizeID, ~ 1 | studyID),

sigma2=c(NA,0), tdist=TRUE, data=dataset)
anova(overall,modelnovar3)

2) and to differences between studies (level 3), formulas

given by Cheung (2014) can be used. The sampling vari-

ance (level 1) cannot be regarded as one fixed value, as

this source of variance varies over primary studies. Sam-

pling variance is based on the sample size, and since sam-

ple sizes often differ (considerably) from study to study

and from effect size to effect size, variation in sampling

variance is the consequence. However, it is possible to

make an estimate of the sampling variance by using the

formula of Cheung (2014, formula 14 on page 2015) and

this estimate is also referred to as the typical within-study

sampling variance. In Listing 10, the formulas of Cheung

are translated into R syntax, with which the distribution of

the total variance over the three levels of the meta-analytic

model can be determined.

First, wewill proceedwith an explanation of the syntax

in Listing 10.

• In the first eight lines of the syntax, the formula of Che-

ung (2014, formula 14 on page 2015) is broken down

in a number of steps. In each step, a new object is

created in which interim results are stored. Even-

tually, the sampling variance is stored in the object

estimated.sampling.variance;
• dataset$v= variable v in object dataset;
• ^2 = squaring an object or variable;
• In creating the objects I2_1, I2_2, and I2_3, each of
the three variance components (i.e., sampling variance,

within-study variance, and between-study variance, re-

spectively) is divided by the total amount of variance,

so that a proportional estimate of each variance com-

ponent is stored in an object. overall$sigma2[1]
refers to the amount of within-study variance in

the object overall (which was created in Listing 5)

and overall$sigma2[2] refers to the amount of
between-study variance in the object overall.

• In creating the objects amountvariancelevel1,

amountvariancelevel2, andamountvariancelevel3,
the proportional estimates of the three variance com-

ponents are multiplied by 100 (%), so that a percentage

estimate of each variance component is stored in an

object;

• By typing and running the objectsamountvariancelevel1,
amountvariancelevel2, andamountvariancelevel3
seperately, the percentage estimates are printed on

screen.

Running this syntax generates the output as presented

in Output 4. For ease of interpretation, the last three lines

of the syntax in Listing 10 are repeated in Output 4.

From Output 4, we can derive that 6.94 percent of the

total variance can be attributed to variance at level 1 (i.e.,

the typical within-study sampling variance); 34.75 percent

of the total variance can be attributed to differences be-

tween effect sizes within studies at level 2 (i.e., within-

study variance); and 58.30 percent of the total variance can

be attributed to differences between studies at level 3 (i.e.,

between-study variance).

A different approach to heterogeneity

Although performing a significance test is the preferred

method for determiningwhether variance components are

significant, it may be wise to examine heterogeneity from

a different perspective. A problem that arises in perform-

ing log-likelihood-ratio tests is that the test results may

not be significant in case the data set is comprised of a

rather small number of primary studies and/or effect sizes,

even though there is in reality substantial within-study or

between-study variance present. In other words, a statis-

tical power problem may be involved. When a research

synthesist is presented with non-significant results of log-

likelihood ratio tests and consequently decides not to pro-

ceed with performing moderator analyses, this may not be

the optimal research strategy.
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Output 3 Output of Listing 9.

df AIC BIC AICc logLik LRT pval QE
Full 3 153.264 161.049 153.517 -73.632 808.8482
Reduced 2 214.066 219.257 214.191 -105.03 62.8024 <.0001 808.8482

Listing 10 The Distribution of the Total Variance over the Three Levels.

# Determining how the total variance is distributed over the
# three levels of the meta-analytic model;
# Print the results in percentages on screen.
n <- length(dataset$v)
list.inverse.variances <- 1 / (dataset$v)

sum.inverse.variances <- sum(list.inverse.variances)
squared.sum.inverse.variances <- (sum.inverse.variances) ^ 2
list.inverse.variances.square <- 1 / (dataset$v^2)
sum.inverse.variances.square <-

sum(list.inverse.variances.square)
numerator <- (n - 1) * sum.inverse.variances
denominator <- squared.sum.inverse.variances -
sum.inverse.variances.square

estimated.sampling.variance <- numerator / denominator

I2_1 <- (estimated.sampling.variance) / (overall$sigma2[1]
+ overall$sigma2[2] + estimated.sampling.variance)

I2_2 <- (overall$sigma2[1]) / (overall$sigma2[1]
+ overall$sigma2[2] + estimated.sampling.variance)

I2_3 <- (overall$sigma2[2]) / (overall$sigma2[1]
+ overall$sigma2[2] + estimated.sampling.variance)

amountvariancelevel1 <- I2_1 * 100
amountvariancelevel2 <- I2_2 * 100
amountvariancelevel3 <- I2_3 * 100

amountvariancelevel1
amountvariancelevel2
amountvariancelevel3

Output 4 Output of Listing 10.

> amountvariancelevel1
[1] 6.942732

> amountvariancelevel2
[1] 34.75388

> amountvariancelevel3
[1] 58.30339
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Because of this problem, it may be wise to examine het-

erogeneity also in a different way by applying the 75% rule

as described by Hunter and Schmidt (1990). These schol-

ars state that heterogeneity can be regarded as substantial,

if less than 75% of the total amount of variance can be at-

tributed to sampling variance (at level 1). If this is the case,

it may be fruitful to examine the potential moderating ef-

fect of study and/or effect size characteristics on the over-

all effect. In our example, approximately 7% of the total

amount of variance could be attributed to sampling vari-

ance (see Output 4), and based on the rule of Hunter and

Schmidt, we can once again conclude that there is substan-

tial variation between effect sizes within studies and/or be-

tween studies, making it relevant to perform moderator

analyses.

Moderator analyses
Categorical moderators with two categories (i.e., bi-
nary or dichotomous predictors)

Becausewe concluded that there is significantwithin-study

and between-study variance, we are now going to examine

whether it is possible to designate variables as moderators

of the overall effect. As we use the REstricted Maximum

Likelihood estimation method (REML) for estimating the

parameters of the meta-analytic model, it is not possible to

compare the fit of a model with potential moderating vari-

ables to the fit of the model without the potential moder-

ating variables (i.e., performing a log-likelihood-ratio test)

(see Hox, 2010; pg. 215). Instead, an omnibus test will be

performed to determine whether a (potential) moderating

effect of one or more variables included in the model is

significant. The null hypothesis in this omnibus test states

that all regression coefficients (i.e., betas) are equal to zero

(H0 : β1 = β2 = β3 = · · · = 0), and the alternative
hypothesis states that at least one of these regression coef-

ficients is not equal to zero. In case an intercept is part of

the model (which is the case in our example), it will not be

tested in the omnibus test.

In our example, we will first examine the potential

moderating effect of publication status of the included pri-

mary studies. Recall that two dummy variables regard-

ing publication status are part of the data set: pstatpub
(coded as 1 = published and 0 = not published) and

pstatnotpub (coded as 0 = published and 1 = not pub-
lished). We are going to use both variables in the modera-

tor analysis, but to test whether publication status is a sig-

nificant moderating variable, we will first extend themeta-

analytic model with the variable pstatpub. We can test
the potential moderating effect of the categorical variable

publication status, by running the syntax in Listing 11.

Once again, the syntax in Listing 11 resembles the syn-

tax in Listing 5 that was used for calculating an overall ef-

fect, but there are some differences:

• The object in which the results of the moderator analy-

sis are stored has been designated as notpublished,
because we have chosen the category not published
(which was coded as 0 in the variable pstatpub and
coded as 1 in the variable pstatnotpub) to be the ref-
erence category. Similar to testing categorical predic-

tors in simple regression analysis, one category func-

tions as the reference category and the other cate-

gorie(s) are compared against the reference category.

From a mere statistical viewpoint, it makes no differ-

ence which category is chosen as the reference cate-

gory;

• mods = is the argument that is taken by the rma.mv
function when the user wants to test the potential mod-

erating influence of a variable. In our example, we are

testing whether effect sizes extracted from published

studies are significantly different from effect sizes ex-

tracted from unpublished studies, and therefore we

have added pstatpub to the mods element by writ-
ing mods = ~pstatpub. Unpublished studies func-
tion as the reference category.

By calling the summary function (see Listing 11), the

results as given in Output 5 are presented on screen. The

following should be derived from Output 5:

• The results of the Test for Residual
Heterogeneity show that there is significant un-
explained variance left between all effect sizes in the

data set (QE(98) = 702.194, p < .001), after publication
status has been added to the meta-analytic model to

test its potential moderating effect;

• The results of the omnibus test are presented under

Test of Moderators (coefficient(s) 2).
The p value is larger than the significant level of .05
and this implies that the regression coefficient of the

variable pstatpub (the only coefficient that is tested)
does not significantly deviate from zero. Therefore,

we can conclude that the overall effect is not moder-

ated by the publication status of the included primary

studies. The results of the omnibus test can be writ-

ten as: F (1, 98) = 1.844, p = .178. Recall that we use
the Knapp and Hartung adjustment (Knapp & Hartung,

2003) in our analyses, implying that the omnibus test

is based on the F distribution (and not on the normal
distribution);

• From the Model Results, we can derive the mean
effect of the reference category, which is 0.812, and rep-

resents themean effect of the primary studies that have

not been published. This mean effect significantly de-

viates from zero, since t(98) = 2.656, p = .009. The mean
effect of published primary studies is equal to 0.812 + (-
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Listing 11 Testing Publication Status as Potential Moderator (Published vs. Unpublished).

# Determine the potential moderating effect of publication status;
# Published studies are tested against unpublished studies, so
# unpublished studies serve as the reference category;
# Print the results stored in the object "notpublished"} on screen.
notpublished <- rma.mv(y, v, mods = ~ pstatpub, random = list(~ 1 | effectsizeID, ~

1 | studyID), tdist=TRUE, data=dataset)
summary(notpublished, digits=3)

Output 5 Output of Listing 11.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-71.435 142.870 150.870 161.210 151.300

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.113 0.336 100 no effectsizeID
sigma^2.2 0.171 0.414 17 no studyID

Test for Residual Heterogeneity:
QE(df = 98) = 702.194, p-val < .001

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 1.844, p-val = 0.178

Model Results:
estimate se tval pval ci.lb ci.ub

intrcpt 0.812 0.306 2.656 0.009 0.205 1.418 **
pstatpub -0.447 0.329 -1.358 0.178 -1.101 0.206
---
Signif. Codes: 0 ’***’ 0.001 ’**’ ’*’ 0.05 ’.’ 0.1 ’ ’ 1

0.447) = 0.365 and, as we already learnt from the results

of the omnibus test, is not significantly different from

the mean effect of unpublished primary studies. The

t test statistic used in testing the significance of the re-
gression coefficient of the variable pstatpub (-0.447)
is not significant (t(98) = -1.358, p = .178) and in line
with the result of the omnibus test. Because we are

testing only one potential moderating variable in this

specific model (i.e., the variable pstatpub), the value
of the omnibus test (F = 1.844) equals the square of the
t-test statistic (-1.358).
Given the results, we can now conclude that the overall

association between mental health disorders of juveniles

and recidivism in delinquency (d = 0.427) is not moderated
by publication status of the included primary studies. If de-

sired, it is possible to examine the significance of the resid-

ual within-study and between-study variance, after one or

more (potential) moderating variables have been included

in the meta-analytic model, by repeating the procedure as

described in the sections on heterogeneity of within- and

between-study variance, respectively. For now, we are not

looking further into the significance of the variance com-

ponents, sincewe did not detect amoderating effect of pub-

lication status.

It can be of relevance to not only report on the mean

effect (including significance and confidence interval) of

the reference category, but also on the mean effect (in-

cluding significance and confidence interval) of the other

categories that are tested against the reference category.

Above, wemanually calculated themean effect of the other

category (i.e., published primary studies in the present ex-

ample), but for determining the significance and the con-

fidence interval of this mean effect, we need to perform

a second analysis. In addition, calculating mean effects
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using R is less prone to error than manually calculating

mean effects and therefore preferable. For performing this

additional analysis, we need to modify the syntax slightly

by including the dummy variable pstatpub and leaving
out the dummy variable pstatnotpub. Recall that these
two variables are coded in opposite directions, so including

pstatnotpub in the syntax will give us the mean effect
of published studies, which is now the reference category

(see Listing 12). Running this syntax generates the output

as presented in Output 6.

We can derive from Output 6 that the mean effect of

published studies is 0.364 (95% CI: 0.120; 0.609), which is

only slightly different from the value we calculated manu-

ally (0.365) and this is due to rounding. Note that, in com-

parison to the results in Output 5, there are no differences

in the fit statistics, the estimates of the variance compo-

nents, and the results of the omnibus test.

Categorical moderators with three categories

Next, we will examine whether the overall association be-

tween mental health disorders of juveniles and recidivism

in delinquency is moderated by the type of delinquent

behavior. We distinguish between three types of delin-

quency: overt, covert, and general delinquent behavior.

Since general delinquent behavior is a non-specific form of

delinquency, we wanted this category to be the reference

category. This implies that the other two categories (overt

and covert delinquent behavior) must be part of the syn-

tax for properly performing the moderator analysis. Re-

call from section 3 that three mutually exclusive dummy

variables representing the three types of delinquency are

part of the data set: typeovert, typecovert, and
typegen. See Listing 13 for the syntax.
In this syntax, the two variables typeovert and

typecovert have been added. By using the + sign, mul-
tiple variables can be added to the mods element. Recall
that the variable representing the reference category (gen-

eral delinquency in our example) must not be added to the

syntax, otherwise the problem of redundancy will arise.

Running the syntax produces the output as presented in

Output 7.

From this output, we can derive that:

• There is a moderating effect of type of delinquency, as

the results of the omnibus test point towards a signifi-

cant moderating effect: F (2, 97) = 7.490, p < .001. This
implies that at least one of the regression coefficients of

the variables added to the model significantly deviates

from zero;

• The mean effect of general delinquency equals 0.470

and this effect significantly deviates from zero: t(97)
= 3.986, p <.001;

• The mean effect of overt delinquency equals 0.470 +

(−0.222) = 0.248. This effect is not significantly lower
than the mean effect of general delinquency, as the re-

gression coefficient is not significant: t(97) = -1.594, p =
.114;

• The mean effect of covert delinquency equals 0.470 +

(-0.730) = -0.260. This effect is significantly lower than

the mean effect of general delinquency, as the regres-

sion coefficient is significant: t(97) = -3.795, p < .001.
Given the results, we can conclude that there is a mod-

erating effect of type of delinquency on the association be-

tween mental health disorders and juvenile offender re-

cidivism. For covert delinquency, the association is signif-

icantly lower (Cohen’s d = -0.260) than for general delin-
quency (Cohen’s d = 0.470). If the research synthesist is in-
terested in testing whether the mean effect of covert delin-

quency significantly deviates from zero, additional syntax

should be written in such a way that the dummy vari-

ables typegen and typeovert are added as potential mod-
erating variables, whereas the dummy variable typecovert
is left out. In this way, covert delinquency will become

the reference category (represented by the intercept), mak-

ing it possible to determine not only the significance of

the mean effect of covert delinquency, but also the con-

fidence interval around this effect. Adding the dummy

variables typegen and typecovert to the syntax (and
leaving out typeovert), would be necessary if we were
to determine the significance of the mean effect of overt

delinquency. We could now examine the significance of

the residual within-study and between-study variance by

repeating the procedure as described in the sections on

heterogeneity of within- and between-study variances, re-

spectively. Note that the syntax for creating the objects

modelnovar2 (see Listing 7) and modelnovar3 (see
Listing 9) should be extended with the argument mods =
~ typeovert + typecovert, so that the moderator
type of delinquency is added to the model.

As a final remark, note that if we were only interested

in determining the moderating effect of a discrete vari-

able and not in estimates of the mean effect (including sig-

nificance and confidence interval) of all the categories of

that variable, it would not be necessary to create and test

dummy variables. In this case, including that single dis-

crete variable as a moderator in the syntax (i.e., after the

mods ~ element) would suffice. However, it has become

rather common to report on the mean effect (as well as

significance and confidence interval) of all categories of a

discrete potential moderating variable (see, for instance,

Assink et al., 2015; Houben et al., 2015; Rapp, Van den

Noortgate, Broekaert, & Vanderplasschen, 2014; Van der

Hallen, Evers, Brewaeys, Van den Noortgate, & Wagemans,

2015; Van der Stouwe, Asscher, Stams, Dekovic, & Van der

Laan, 2014; Weisz et al., 2013).
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Output 6 Output of Listing 12.

Multivariate Meta-Analysis Model (k = 100; method: REML)
logLik Deviance AIC BIC AICc
-71.435 142.870 150.870 161.210 151.300

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.113 0.336 100 no effectsizeID
sigma^2.2 0.171 0.414 17 no studyID

Test for Residual Heterogeneity:
QE(df = 98) = 702.194, p-val < .001

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 1.844, p-val = 0.178

Model Results:
estimate se tval pval ci.lb ci.ub

intrcpt 0.364 0.123 2.962 0.004 0.120 0.609 **
pstatnotpub 0.447 0.329 1.358 0.178 -0.206 1.101
---
Signif. Codes: 0 ’***’ 0.001 ’**’ ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Output 7 Output of Listing 13.

Multivariate Meta-Analysis Model (k = 100; method: REML)

logLik Deviance AIC BIC AICc
-66.290 132.581 142.581 155.454 143.240

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.085 0.291 100 no effectsizeID
sigma^2.2 0.190 0.436 17 no studyID

Test for Residual Heterogeneity:
QE(df = 97) = 761.162, p-val < .001

Test of Moderators (coefficient(s) 2,3):
QM(df = 2) = 7.490, p-val < .001

Model Results:
estimate se tval pval ci.lb ci.ub

intrcpt 0.470 0.118 3.986 < .001 0.236 0.704 ***
typeovert -0.222 0.139 -1.594 0.114 -0.498 0.054
typecovert -0.730 0.192 -3.795 < .001 -1.111 -0.348 ***
---
Signif. Codes: 0 ’***’ 0.001 ’**’ ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Listing 12 Testing Publication Status as Potential Moderator (Unpublished vs. Published).

# Determine the potential moderating effect of publication status;
# Unpublished studies are now tested against published
# studies, so published studies serve as the reference category;
# Print the results stored in the object "published" on screen.
published <- rma.mv(y, v, mods = ~ pstatnotpub, random = list(~ 1 | effectsizeID, ~

1 | studyID), tdist=TRUE, data=dataset)
summary(published, digits=3)

Listing 13 Testing Type of Delinquency as Potential Moderator.

# Determine the potential moderating effect of type of delinquency;
# General delinquency is chosen as the reference category;
# Print the results stored in the object "generaldelinquency" on screen.
generaldelinquency <- rma.mv(y, v, mods = ~ typeovert + typecovert, random = list(~

1 | effectsizeID, ~ 1 | studyID), tdist=TRUE, data=dataset)
summary(generaldelinquency, digits=3)

Continuous moderators

In this last example of univariate moderator analyses,

we will show how to test a potential continuous modera-

tor. We were interested in examining whether the year

in which a primary study was published moderates the

overall effect, since changes over time may influence the

strength of the association between mental health disor-

ders of juveniles and juvenile offender recidivism. These

changes over time may be seen, for instance, in juvenile

criminal law or in the way mental health disorders and/or

recidivism are operationalized and assessed. We treated

publication year as a continuous variable and its potential

moderating effect can be tested by running the syntax in

Listing 14. Running this syntax produces the output pre-

sented in Output 8.

From Output 8, we can derive that:

• Publication year is a significant moderator, as the om-

nibus test is significant (F (1, 98) = 5.464, p = .021) and,
logically, also the regression coefficient is significant (-

0.042; t(98) = -2.238, p = .021). The regression coeffi-
cient is negative, implying that the more recent a pri-

mary study has been published, the lower the reported

effects in the primary studies;

• The intercept significantly deviates from zero (t(98) =
4.095, p < .001), but this is not the most important re-
sult when testing a continuous moderator. The value

of the intercept represents the mean effect of effect

sizes extracted from primary studies that have been

published in the mean publication year (i.e., when the

variable pyear, that was centred around its mean, is
given the value 0). So, in contrast to the procedure for

testing categorical moderators, the intercept cannot be

interpreted as the mean effect of a reference category.

When testing continuous variables as potential moder-

ators, the regression coefficient (beta) and its signifi-

cance are in most cases more informative.

In sum, we can conclude that publication year is a sig-

nificantmoderator of the overall association betweenmen-

tal health disorders of juveniles and recidivism in delin-

quency. As studies have been published more recently

(i.e., publication year increases), the strength of the over-

all association decreases. This significant decrease in ef-

fect over time is not indicative for a very robust association

between mental health disorders of juveniles and juvenile

offender recidivism, and would call for further testing of

more specific potential moderating variables. Note that the

significance of the within-study and between-study vari-

ance can be tested again (see the sections on heterogene-

ity of within- and between-study variances, respectively),

to examine whether there is significant variance left that

may be explained by other moderating variables.

Multiple moderator model

In meta-analytic research it is common practice to test the

potential moderating effect of multiple variables, such as

study, sample, and research design characteristics. As de-

noted by Hox (2010), many of these variables are often

interrelated leading to substantial multicollinearity in the

analyses. As a consequence, it is not always straightfor-

ward to determine what effects are really relevant and de-

serve the most attention. In light of this, Hox states that

testing multiple moderators in a single model after (poten-

tial) moderating effects have been evaluated separately in
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Listing 14 Testing Publication Year as Potential Moderator.

# Determine the potential moderating effect of publication year;
# Print the results stored in the object "publicationyear" on screen.
publicationyear <- rma.mv(y, v, mods = ~ pyear, random = list(~ 1 | effectsizeID, ~

1 | studyID), tdist=TRUE, data=dataset)
summary(publicationyear, digits=3)

Output 8 Output of Listing 14.

Multivariate Meta-Analysis Model (k = 100; method: REML)

logLik Deviance AIC BIC AICc
-70.282 140.564 148.564 158.904 148.994

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.113 0.336 100 no effectsizeID
sigma^2.2 0.135 0.367 17 no studyID

Test for Residual Heterogeneity:
QE(df = 98) = 672.545, p-val < .001

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 5.464, p-val = 0.021

Model Results:
estimate se tval pval ci.lb ci.ub

intrcpt 0.426 0.104 4.095 < .001 0.219 0.632 ***
pyear -0.042 0.018 -2.238 0.021 -0.078 -0.006 *
---
Signif. Codes: 0 ’***’ 0.001 ’**’ ’*’ 0.05 ’.’ 0.1 ’ ’ 1

univariate models, is a reasonable strategy. In our final

step of the moderator analyses, we follow the approach of

Hox and we will examine the unique effect of the variables

that were previously identified as significant moderators

in the univariate analyses. To do so, we need to extend the

meta-analytic model by adding all significant moderating

variables simultaneously. In our example, recall that the

categorical variable type of delinquency as well as the con-

tinuous variable publication year were identified as signif-

icant moderators in the univariate analyses (see Outputs 7

and 8, respectively). Therefore, we will extend the meta-

analytic model with the variables pyear, typeovert,
and typecovert. Since general delinquency was the ref-
erence category in testing the variable type of delinquency

as a potential moderator, we will not include the dummy

variable typegen in the syntax. The multiple moderator
model can be built by executing the syntax in Listing 15.

Running this syntax produces the output as presented in

Output 9.

From Output 9, we can derive that:

• At least one of the regression coefficients of the moder-

ators significantly deviates from zero, as the omnibus

test shows a significant result (F (3, 96) = 6.414, p < .001);
• The regression coefficient of publication year (-0.038)

significantly deviates from zero, as the t test shows a
significant result (t(96) = -2.077, p = .040);

• The regression coefficient of covert delinquency (-

0.709) significantly deviates from zero, as the t test
shows a significant result (t(96) = -3.707, p < .001).
Based on these results, we can conclude that both pub-

lication year and the category covert delinquency (ver-

sus general delinquency) of the variable type of delin-

quency have a unique moderating effect on the associ-

ation between mental health disorders of juveniles and

recidivism in delinquency. In other words, we can say

that both moderators are robust in the sense that they
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Listing 15 Testing Multiple Moderators in a Single Model.

# Testing a multiple moderator model in which publication year
# and delinquency type (overt delinquency and covert
# delinquency) have been added as moderators.
multiplemoderator <- rma.mv(y, v, mods = ~ pyear + typeovert + typecovert, random =

list(~ 1 | effectsizeID, ~ 1 | studyID), tdist=TRUE, data=dataset)
summary(multiplemoderator, digits=3)

Output 9 Output of Listing 15.

Multivariate Meta-Analysis Model (k = 100; method: REML)

logLik Deviance AIC BIC AICc
-63.375 126.750 138.750 154.136 139.694

Variance Components:
estim sqrt nlvls fixed factor

sigma^2.1 0.085 0.292 100 no effectsizeID
sigma^2.2 0.149 0.386 17 no studyID

Test for Residual Heterogeneity:
QE(df = 96) = 609.357, p-val < .001

Test of Moderators (coefficient(s) 2,3,4):
QM(df = 3) = 6.414, p-val < .001

Model Results:
estimate se tval pval ci.lb ci.ub

intrcpt 0.466 0.107 4.346 < .001 0.253 0.678 ***
pyear -0.038 0.018 -2.077 0.040 -0.074 -0.002 *
typeovert -0.204 0.139 -1.472 0.144 -0.479 0.071
typecovert -0.709 0.191 -3.707 < .001 -1.089 -0.330 ***
---
Signif. Codes: 0 ’***’ 0.001 ’**’ ’*’ 0.05 ’.’ 0.1 ’ ’ 1

are not confounded by the other variable in the model

(i.e., covert delinquency (versus general delinquency) is

not confounded by publication year and vice versa). This

multiple moderator model provides more evidence of true

moderating effects of the variables covert delinquency

(versus general delinquency) and publication year than the

results of the univariate moderator analyses alone. Now

that the multiple moderator model is built, it is possible

to test the significance of the residual within-study and

between-study variance, respectively. Note that, for this

purpose, the syntax in Listings 7 and 9 should then be ex-

tended with the mods = ~ argument and all variables

that are part of the present multiple moderator model.

Missing data and size of the data set
Although the primary aim of this tutorial is to demonstrate

how a multilevel approach can be applied to meta-analytic

models in R, we shortly address the problem of missing

data in multilevel meta-analytic research. Throughout the

years a number of techniques have been developed for as-

sessingwhether data is missing in ameta-analytic research

project and, if so, how this affects the results. Examples

of well-known techniques are the Rosenthal’s fail-safe test

(1979), Egger’s linear regression test (Egger, Davey-Smith,

Schneider, & Minder, 1997), the Begg and Mazumdar’s

Rank Correlation test (Begg & Mazumdar, 1994), and the

trim-and-fill method (Duval & Tweedie, 2000a, 2000b). It is

good practice for a research synthesist to discuss the extent

to which the results were affected by missing data, and to
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apply at least one of the available methods for detecting

and handling missing data. This also accounts for multi-

level meta-analytic research. In scientific literature, there

is a considerable and ongoing debate on the appropriate-

ness of the available methods and each method seems to

have its own limitations (see, for instance, Egger, Davey-

Smith, & Altman, 2001; Nakagawa & Santos, 2012; Nik Idris,

2012; Peters, Sutton, Jones, Abrams, & Rushton, 2007; Ter-

rin, Schmid, Lau, & Olkin, 2003). Therefore, selecting the

most appropriate method for dealing with missing data

may not be straightforward. Furthermore, to our knowl-

edge, the available methods have not been evaluated in

multi-level meta-analytic research and this makes it even

more difficult to select an appropriate method for detect-

ing and handlingmissing data in amultilevelmeta-analytic

research project. Evaluating the performance of the avail-

able methods in multi-level meta-analysis would be a good

direction for future research.

As for the size of the data set used in multilevel meta-

analytic research, it is rather difficult to state what themin-

imum number of studies and effect sizes should be. The

statistical power in the analyses increases as the number of

studies and effect sizes in the data set increases, but meth-

ods for determining the exact power in multilevel meta-

analytic models seem not yet available. Further, Viecht-

bauer (2005) and Van den Noortgate and Onghena (2003)

showed that when (restricted) maximum likelihood proce-

dures are used for estimating the parameters in the mul-

tilevel meta-analytic model, a smaller number of studies

might result in underestimated standard errors and, conse-

quently, an increase in the number of type 1 errors in test-

ing the overall effect size and the moderator effects. In ad-

dition, a low number of studies may also lead to the prob-

lem of a biased estimate of the between-study variance and

the corresponding standard error (see also Van den Noort-

gate et al., 2013). To be short, larger numbers of studies

and effect sizes are to be preferred above smaller num-

bers, which is not suprising. Future research on the per-

formance and robustness of multilevel meta-analytic mod-

els using data sets of different sizes (and types) is needed.

All in all, given the difficulties and restrictions of the tra-

ditional univariate approach to meta-analysis, the three-

level approach in meta-analytic research seems reliable

and promising. For further reading on three-level meta-

analysis, we refer the reader to Van den Noortgate and

Onghena (2003) and Van den Noortgate et al. (2013, 2014).

Conclusion
Applying amultilevel approach tometa-analysis is a strong

method for dealing with interdependency of effect sizes,

but until today, it is a rather unknown method among

scholars and it has not been widely used in meta-analytic

research. The main purpose of the present tutorial was

to provide an introduction to multilevel modeling in meta-

analysis using the rma.mv function of the metafor R pack-

age (Viechtbauer, 2015). In specific, we show how the

rma.mv function can be called in R syntax, so that a three

level structure is applied to ameta-analytic model. In these

three-level models, three different variance components

are considered: sampling variance at the first level, within-

study variance at the second level, and between-study vari-

ance at the third level (Cheung, 2014; Hox, 2010; Van den

Noortgate, López-López, Maŕın-Martinez, & Sánchez-Meca,

2013, 2014). In short, this tutorial offers a step-by-step

guide for (1) organizing a data file; (2) setting up the R

environment; (3) calculating an overall effect; (4) examin-

ing heterogeneity of within-study variance and between-

study variance; (5) performing categorical and continuous

moderator analyses; and (6) examining a multiple moder-

ator model. The statistical approach described in this tu-

torial has been used in several published meta-analytic re-

views (see, for instance, Assink et al., 2015; Gubbels, Van

der Stouwe, Spruit, & Stams, 2016; Spruit, Assink, Van Vugt,

Van der Put, & Stams, 2016; Spruit, Schalkwijk, Van Vugt, &

Stams, 2016; Spruit, Van Vugt, Van der Put, Van der Stouwe,

& Stams, 2016). The data file that was used in the present

tutorial can be downloaded by the reader from the jour-

nal’s website.
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