20 research outputs found

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus (R) II retinal prosthesis system

    Get PDF
    Background: The main objective of this study was to test Argus II subjects on three real‐world functional vision tasks. / Design: The study was designed to be randomized and prospective. Testing was conducted in a hospital/research laboratory setting at the various participating centres. / Participants: Twenty eight Argus II subjects, all profoundly blind, participated in this study. / Methods: Subjects were tested on the three real‐world functional vision tasks: Sock Sorting, Sidewalk Tracking and Walking Direction Discrimination task. / Main Outcome Measures: For the Sock Sorting task, percentage correct was computed based on how accurately subjects sorted the piles on a cloth‐covered table and on a bare table. In the Sidewalk Tracking task, an ‘out of bounds’ count was recorded, signifying how often the subject veered away from the test course. During the Walking Direction Discrimination task, subjects were tested on the number of times they correctly identified the direction of testers walking across their field of view. / Results: The mean percentage correct OFF versus ON for the Sock Sorting task was found to be significantly different for both testing conditions (t‐test, P < 0.01). On the Sidewalk Tracking task, subjects performed significantly better with the system ON than they did with the system OFF (t‐test, P < 0.05). Eighteen (18) of 27 subjects (67%) performed above chance with the system ON, and 6 (22%) did so with system OFF on the Walking Direction Discrimination task. / Conclusions: Argus II subjects performed better on all three tasks with their systems ON than they did with their systems OFF

    Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons

    Get PDF
    The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced (mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants. Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses. Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting

    Effective Stimuli for Constructing Reliable Neuron Models

    Get PDF
    The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose

    High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex

    Get PDF
    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits

    Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making

    Get PDF
    <div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div

    Real-time closed-loop electrophysiology: Towards new frontiers in in vitro investigations in the neurosciences

    No full text
    Reflected at any level of organization of the central nervous system, most of the processes ranging from ion channels to neuronal networks occur in a closed loop, where the input to the system depends on its output. In contrast, most in vitro preparations and experimental protocols operate autonomously, and do not depend on the output of the studied system. Thanks to the progress in digital signal processing and real-time computing, it is now possible to artificially close the loop and investigate biophysical processes and mechanisms under increased realism. In this contribution, we review some of the most relevant examples of a new trend in in vitro electrophysiology, ranging from the use of dynamic-clamp to multi-electrode distributed feedback stimulation. We are convinced these represents the beginning of new frontiers for the in vitro investigation of the brain, promising to open the still existing borders between theoretical and experimental approaches while taking advantage of cutting edge technologies

    The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex

    No full text
    The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level. Copyright \ua9 2007 Society for Neuroscience

    Single-neuron discharge properties and network activity in dissociated cultures of neocortex

    No full text
    Cultures of neurons from rat neocortex exhibit spontaneous, temporally patterned, network activity. Such a distributed activity in vitro constitutes a possible framework for combining theoretical and experimental approaches, linking the single-neuron discharge properties to network phenomena. In this work, we addressed the issue of closing the loop, from the identification of the single-cell discharge properties to the prediction of collective network phenomena. Thus, we compared these predictions with the spontaneously emerging network activity in vitro, detected by substrate arrays of microelectrodes. Therefore, we characterized the single-cell discharge properties to Gauss-distributed noisy currents, under pharmacological blockade of the synaptic transmission. Such stochastic currents emulate a realistic input from the network. The mean (m) and variance (s2) of the injected current were varied independently, reminiscent of the extended mean-field description of a variety of possible presynaptic network organizations and mean activity levels, and the neuronal response was evaluated in terms of the steady-state mean firing rate (f). Experimental current-to-spike-rate responses f(m, s2) were similar to those of neurons in brain slices, and could be quantitatively described by leaky integrate-and-fire (IF) point neurons. The identified model parameters were then used in numerical simulations of a network of IF neurons. Such a network reproduced a collective activity, matching the spontaneous irregular population bursting, observed in cultured networks. We finally interpret such a collective activity and its link with model details by the mean-field theory. We conclude that the IF model is an adequate minimal description of synaptic integration and neuronal excitability, when collective network activities are considered in vitro
    corecore