3,148 research outputs found
Dependence of Maximum Trappable Field on Superconducting Nb3Sn Cylinder Wall Thickness
Uniform dipole magnetic fields from 1.9 to 22.4 kOe were permanently trapped,
with high fidelity to the original field, transversely to the axes of hollow
Nb3Sn superconducting cylinders. These cylinders were constructed by helically
wrapping multiple layers of superconducting ribbon around a mandrel. This is
the highest field yet trapped, the first time trapping has been reported in
such helically wound taped cylinders, and the first time the maximum trappable
field has been experimentally determined as a function of cylinder wall
thickness.Comment: 8 pages, 4 figures, 1 table. PACS numbers: 74.60.Ge, 74.70.Ps,
41.10.Fs, 85.25.+
Global periodicity conditions for maps and recurrences via Normal Forms
We face the problem of characterizing the periodic cases in parametric
families of (real or complex) rational diffeomorphisms having a fixed point.
Our approach relies on the Normal Form Theory, to obtain necessary conditions
for the existence of a formal linearization of the map, and on the introduction
of a suitable rational parametrization of the parameters of the family. Using
these tools we can find a finite set of values p for which the map can be
p-periodic, reducing the problem of finding the parameters for which the
periodic cases appear to simple computations. We apply our results to several
two and three dimensional classes of polynomial or rational maps. In particular
we find the global periodic cases for several Lyness type recurrences.Comment: 25 page
Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function
It is known that the moments of the maximum value of a one-dimensional
conditional Brownian motion, the three-dimensional Bessel bridge with duration
1 started from the origin, are expressed using the Riemann zeta function. We
consider a system of two Bessel bridges, in which noncolliding condition is
imposed. We show that the moments of the maximum value is then expressed using
the double Dirichlet series, or using the integrals of products of the Jacobi
theta functions and its derivatives. Since the present system will be provided
as a diffusion scaling limit of a version of vicious walker model, the ensemble
of 2-watermelons with a wall, the dominant terms in long-time asymptotics of
moments of height of 2-watermelons are completely determined. For the height of
2-watermelons with a wall, the average value was recently studied by Fulmek by
a method of enumerative combinatorics.Comment: v2: LaTeX, 19 pages, 2 figures, minor corrections made for
publication in J. Stat. Phy
Devil's Staircase in Magnetoresistance of a Periodic Array of Scatterers
The nonlinear response to an external electric field is studied for classical
non-interacting charged particles under the influence of a uniform magnetic
field, a periodic potential, and an effective friction force. We find numerical
and analytical evidence that the ratio of transversal to longitudinal
resistance forms a Devil's staircase. The staircase is attributed to the
dynamical phenomenon of mode-locking.Comment: two-column 4 pages, 5 figure
The emerging energy web
There is a general need of elaborating energy-effective solutions for managing our increasingly dense interconnected world. The problem should be tackled in multiple dimensions -technology, society, economics, law, regulations, and politics- at different temporal and spatial scales. Holistic approaches will enable technological solutions to be supported by socio-economic motivations, adequate incentive regulation to foster investment in green infrastructures coherently integrated with adequate energy provisioning schemes. In this article, an attempt is made to describe such multidisciplinary challenges with a coherent set of solutions to be identified to significantly impact the way our interconnected energy world is designed and operated. Graphical abstrac
Perturbation Energy Production in Pipe Flow over a Range of Reynolds Numbers using Resolvent Analysis
The response of pipe flow to physically realistic, temporally and spatially continuous(periodic) forcing is investigated by decomposing the resolvent into orthogonal forcing and response pairs ranked according to their contribution to the resolvent 2-norm. Modelling the non-linear terms normally neglected by linearisation as unstructured forcing permits qualitative extrapolation of the resolvent norm results beyond infinitesimally small perturbations to the turbulent case. The concepts arising have a close relationship to input output transfer function analysis methods known in the control systems literature. The body forcings that yield highest disturbance energy gain are identified and ranked by the decomposition and a worst-case bound put on the energy gain integrated across the pipe cross-section. Analysis of the spectral variation of the corresponding response modes reveals interesting comparisons with recent observations of the behavior of the streamwise velocity in high Reynolds number (turbulent) pipe flow, including the importance of very long scales of the order of ten pipe radii, in the extraction of turbulent energy from the mean flow by the action of turbulent shear stress against the velocity gradient
Ergodicity criteria for non-expanding transformations of 2-adic spheres
In the paper, we obtain necessary and sufficient conditions for ergodicity
(with respect to the normalized Haar measure) of discrete dynamical systems
on 2-adic spheres of radius
, , centered at some point from the ultrametric space of
2-adic integers . The map is
assumed to be non-expanding and measure-preserving; that is, satisfies a
Lipschitz condition with a constant 1 with respect to the 2-adic metric, and
preserves a natural probability measure on , the Haar measure
on which is normalized so that
Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation
We study the Einstein-Klein-Gordon equations for a convex positive potential
in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing
the inherent properties of the system of differential equations, the study of
the asymptotic behaviors of the solutions and their stability is done for an
exponential potential. The results are compared with those of Burd and Barrow.
In contrast with their results, we show that for the BI case isotropy can be
reached without inflation and we find new critical points which lead to new
exact solutions. On the other hand we recover the result of Burd and Barrow
that if inflation occurs then isotropy is always reached. The numerical
integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published
in Phys. Rev.
- …
