3,148 research outputs found

    Dependence of Maximum Trappable Field on Superconducting Nb3Sn Cylinder Wall Thickness

    Full text link
    Uniform dipole magnetic fields from 1.9 to 22.4 kOe were permanently trapped, with high fidelity to the original field, transversely to the axes of hollow Nb3Sn superconducting cylinders. These cylinders were constructed by helically wrapping multiple layers of superconducting ribbon around a mandrel. This is the highest field yet trapped, the first time trapping has been reported in such helically wound taped cylinders, and the first time the maximum trappable field has been experimentally determined as a function of cylinder wall thickness.Comment: 8 pages, 4 figures, 1 table. PACS numbers: 74.60.Ge, 74.70.Ps, 41.10.Fs, 85.25.+

    Global periodicity conditions for maps and recurrences via Normal Forms

    Get PDF
    We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences.Comment: 25 page

    Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

    Full text link
    It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.Comment: v2: LaTeX, 19 pages, 2 figures, minor corrections made for publication in J. Stat. Phy

    Devil's Staircase in Magnetoresistance of a Periodic Array of Scatterers

    Full text link
    The nonlinear response to an external electric field is studied for classical non-interacting charged particles under the influence of a uniform magnetic field, a periodic potential, and an effective friction force. We find numerical and analytical evidence that the ratio of transversal to longitudinal resistance forms a Devil's staircase. The staircase is attributed to the dynamical phenomenon of mode-locking.Comment: two-column 4 pages, 5 figure

    The emerging energy web

    Get PDF
    There is a general need of elaborating energy-effective solutions for managing our increasingly dense interconnected world. The problem should be tackled in multiple dimensions -technology, society, economics, law, regulations, and politics- at different temporal and spatial scales. Holistic approaches will enable technological solutions to be supported by socio-economic motivations, adequate incentive regulation to foster investment in green infrastructures coherently integrated with adequate energy provisioning schemes. In this article, an attempt is made to describe such multidisciplinary challenges with a coherent set of solutions to be identified to significantly impact the way our interconnected energy world is designed and operated. Graphical abstrac

    Perturbation Energy Production in Pipe Flow over a Range of Reynolds Numbers using Resolvent Analysis

    Get PDF
    The response of pipe flow to physically realistic, temporally and spatially continuous(periodic) forcing is investigated by decomposing the resolvent into orthogonal forcing and response pairs ranked according to their contribution to the resolvent 2-norm. Modelling the non-linear terms normally neglected by linearisation as unstructured forcing permits qualitative extrapolation of the resolvent norm results beyond infinitesimally small perturbations to the turbulent case. The concepts arising have a close relationship to input output transfer function analysis methods known in the control systems literature. The body forcings that yield highest disturbance energy gain are identified and ranked by the decomposition and a worst-case bound put on the energy gain integrated across the pipe cross-section. Analysis of the spectral variation of the corresponding response modes reveals interesting comparisons with recent observations of the behavior of the streamwise velocity in high Reynolds number (turbulent) pipe flow, including the importance of very long scales of the order of ten pipe radii, in the extraction of turbulent energy from the mean flow by the action of turbulent shear stress against the velocity gradient

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation

    Get PDF
    We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing the inherent properties of the system of differential equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that for the BI case isotropy can be reached without inflation and we find new critical points which lead to new exact solutions. On the other hand we recover the result of Burd and Barrow that if inflation occurs then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published in Phys. Rev.
    corecore