108 research outputs found

    The C-Band All-Sky Survey (C-BASS): New Constraints on the Integrated Radio Spectrum of M 31

    Full text link
    The Andromeda galaxy (M31) is our closest neighbouring spiral galaxy, making it an ideal target for studying the physics of the interstellar medium in a galaxy very similar to our own. Using new observations of M31 at 4.76GHz by the C-Band All-Sky Survey (C-BASS), and all available radio data at 11^\circ resolution, we produce the integrated spectrum and put new constraints on the synchrotron spectral index and anomalous microwave emission (AME) from M31. We use aperture photometry and spectral modelling to fit for the integrated spectrum of M31, and subtract a comprehensive model of nearby background radio sources. The AME in M31 is detected at 3σ3\sigma significance with a peak near 30GHz and flux density 0.27±0.090.27\pm0.09Jy. The synchrotron spectral index of M31 is flatter than our own Galaxy at α=0.66±0.03\alpha = -0.66 \pm 0.03 with no strong evidence of spectral curvature. The emissivity of AME, averaged over the total emission from M31 is lower than typical AME sources in our Galaxy, implying that AME is not uniformly distributed throughout M31 and instead is likely confined to sub-regions -- this will need to be confirmed using future higher resolution observations around 20--30GHz.Comment: 16 pages, 6 figures, submitted to MNRA

    Light and flow regimes regulate the metabolism of rivers

    Get PDF
    Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.We thank Ted Stets, Jordan Read, Tom Battin, Sophia Bonjour, Marina Palta, and members of the Duke River Center for their help in developing these ideas. This work was supported by grants from the NSF 1442439 (to E.S.B. and J.W.H.), 1834679 (to R.O.H.), 1442451 (to R.O.H.), 2019528 (to R.O.H. and J.R.B.), 1442140 (to M.C.), 1442451 (to A.M.H.), 1442467 (to E.H.S.), 1442522 (to N.B.G.), 1624807 (to N.B.G.), and US Geological Survey funding for the working group was supported by the John Wesley Power Center for Analysis and Synthesis. Phil Savoy contributed as a postdoc- toral associate at Duke University and as a postdoctoral associate (contractor) at the US Geological Survey

    A standard protocol for reporting species distribution models

    Get PDF
    Species distribution models (SDMs) constitute the most common class of models across ecology, evolution and conservation. The advent of ready-to-use software packages and increasing availability of digital geoinformation have considerably assisted the application of SDMs in the past decade, greatly enabling their broader use for informing conservation and management, and for quantifying impacts from global change. However, models must be fit for purpose, with all important aspects of their development and applications properly considered. Despite the widespread use of SDMs, standardisation and documentation of modelling protocols remain limited, which makes it hard to assess whether development steps are appropriate for end use. To address these issues, we propose a standard protocol for reporting SDMs, with an emphasis on describing how a study's objective is achieved through a series of modeling decisions. We call this the ODMAP (Overview, Data, Model, Assessment and Prediction) protocol, as its components reflect the main steps involved in building SDMs and other empirically-based biodiversity models. The ODMAP protocol serves two main purposes. First, it provides a checklist for authors, detailing key steps for model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and explain how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and adoption by the scientific community

    Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

    Get PDF
    Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range 1010-6060\,GHz and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the 10\approx10^{\circ} diameter λ\lambda Orionis ring by combining intensity data from the QUIJOTE experiment at 1111, 1313, 1717 and 1919\,GHz and the C-Band All Sky Survey (C-BASS) at 4.764.76\,GHz, together with 19 ancillary datasets between 1.421.42 and 30003000\,GHz. Maps of physical parameters at 11^{\circ} resolution are produced through Markov Chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a log-normal distribution. AME is detected in excess of 20σ20\,\sigma at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from 35\approx35\,GHz near the free-free region to 21\approx21\,GHz in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalised by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role.Comment: 19 pages, 7 figures, accepted for publication by MNRA

    Novel community data in ecology-properties and prospects

    Get PDF
    New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce ‘novel community data’ as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning

    Optimising monitoring efforts for secretive snakes: a comparison of occupancy and N-mixture models for assessment of population status

    Get PDF
    A fifth of reptiles are Data Deficient; many due to unknown population status. Monitoring snake populations can be demanding due to crypsis and low population densities, with insufficient recaptures for abundance estimation via Capture-Mark-Recapture. Alternatively, binomial N-mixture models enable abundance estimation from count data without individual identification, but have rarely been successfully applied to snake populations. We evaluated the suitability of occupancy and N-mixture methods for monitoring an insular population of grass snakes (Natrix helvetica) and considered covariates influencing detection, occupancy and abundance within remaining habitat. Snakes were elusive, with detectability increasing with survey effort (mean: 0.33 ± 0.06 s.e.m.). The probability of a transect being occupied was moderate (mean per kilometre: 0.44 ± 0.19 s.e.m.) and increased with transect length. Abundance estimates indicate a small threatened population associated to our transects (mean: 39, 95% CI: 20–169). Power analysis indicated that the survey effort required to detect occupancy declines would be prohibitive. Occupancy models fitted well, whereas N-mixture models showed poor fit, provided little extra information over occupancy models and were at greater risk of closure violation. Therefore we suggest occupancy models are more appropriate for monitoring snakes and other elusive species, but that population trends may go undetected

    Early-Career Coordinated Distributed Experiments: Empowerment Through Collaboration

    Get PDF
    Este artículo contiene 7 páginas, 1 tabla, 3 figuras.Coordinated distributed experiments (CDEs) enable the study of large-scale ecological patterns in geographically dispersed areas, while simultaneously providing broad academic and personal benefits for the participants. However, the effective involvement of early-career researchers (ECRs) presents major challenges. Here, we analyze the benefits and challenges of the first CDE exclusively led and conducted by ECRs (i.e. ECR-CDE), which sets a baseline for similar CDEs, and we provide recommendations for successful CDE execution. ECR-CDEs achieve most of the outcomes identified in conventional CDEs as well as extensive benefits for the young cohort of researchers, including: (i) receiving scientific credit, (ii) peer-training in new concepts and methods, (iii) developing leadership and communication skills, (iv) promoting a peer network among ECRs, and (v) building on individual engagement and independence. We also discuss the challenges of ECR-CDEs, which are mainly derived from the lack of independence and instability of the participants, and we suggest mechanisms to address them, such as resource re-allocation and communication strategies. We conclude that ECR-CDEs can be a relevant tool to empower ECRs across disciplines by fostering their training, networking and personal well-being.The authors were supported by the following founding: NC the support of the Beatriu de Pinós postdoctoral program of the Government of Catalonia’s Secretariat for Universities and Research of the Ministry of Economy and Knowledge (BP2016- 00215), EE by a predoctoral grant from the Basque Government (2014-2017), AB by a Generalitat de Catalunya—Beatriu de Pinós (BP-00385-2016), AMG-F by a predoctoral research grant (BES-2013-065770) from the Spanish Ministry of Economy and Competitiveness, MAr by a postdoctoral grant from the Basque Government, MIA by a Juan de la Cierva postdoctoral grant (FJCI-2015-26192), PR-L by a Margalida Comas postdoctoral contract (PD/031/2018) funded by the Government of the Balearic Islands and the European Social Fund, AP by a Ramón Areces Foundation Postdoctoral Scholarship, and AL by a Kempe Foundation stipend. DOMIPEX project was founded by the First Call of Collaborative Projects among Young Researchers of the Iberian Association of Limnology (AIL; 2013-2015).Peer reviewe

    The C-Band All-Sky Survey: total intensity point-source detection over the northern sky

    Get PDF
    We present a point-source detection algorithm that employs the second-order Spherical Mexican Hat wavelet filter (SMHW2), and use it on C-Band All-Sky Survey (C-BASS) northern intensity data to produce a catalogue of point sources. This catalogue allows us to cross-check the C-BASS flux-density scale against existing source surveys, and provides the basis for a source mask that will be used in subsequent C-BASS and cosmic microwave background (CMB) analyses. The SMHW2 allows us to filter the entire sky at once, avoiding complications from edge effects arising when filtering small sky patches. The algorithm is validated against a set of Monte Carlo simulations, consisting of diffuse emission, instrumental noise, and various point-source populations. The simulated source populations are successfully recovered. The SMHW2 detection algorithm is used to produce a 4.76GHz northern sky source catalogue in total intensity, containing 1784 sources and covering declinations δ ≥ −10°. The C-BASS catalogue is matched with the Green Bank 6 cm (GB6) and Parkes-MIT-NRAO (PMN) catalogues over their areas of common sky coverage. From this we estimate the 90 per cent completeness level to be approximately 610mJy⁠, with a corresponding reliability of 98 per cent, when masking the brightest 30 per cent of the diffuse emission in the C-BASS northern sky map. We find the C-BASS and GB6 flux-density scales to be consistent with one another to within approximately 4 per cent

    Model averaging in ecology: a review of Bayesian, information-theoretic and tactical approaches for predictive inference

    Get PDF
    In ecology, the true causal structure for a given problem is often not known, and several plausible models and thus model predictions exist. It has been claimed that using weighted averages of these models can reduce prediction error, as well as better reflect model selection uncertainty. These claims, however, are often demonstrated by isolated examples. Analysts must better understand under which conditions model averaging can improve predictions and their uncertainty estimates. Moreover, a large range of different model averaging methods exists, raising the question of how they differ in their behaviour and performance. Here, we review the mathematical foundations of model averaging along with the diversity of approaches available. We explain that the error in model‐averaged predictions depends on each model's predictive bias and variance, as well as the covariance in predictions between models, and uncertainty about model weights. We show that model averaging is particularly useful if the predictive error of contributing model predictions is dominated by variance, and if the covariance between models is low. For noisy data, which predominate in ecology, these conditions will often be met. Many different methods to derive averaging weights exist, from Bayesian over information‐theoretical to cross‐validation optimized and resampling approaches. A general recommendation is difficult, because the performance of methods is often context dependent. Importantly, estimating weights creates some additional uncertainty. As a result, estimated model weights may not always outperform arbitrary fixed weights, such as equal weights for all models. When averaging a set of models with many inadequate models, however, estimating model weights will typically be superior to equal weights. We also investigate the quality of the confidence intervals calculated for model‐averaged predictions, showing that they differ greatly in behaviour and seldom manage to achieve nominal coverage. Our overall recommendations stress the importance of non‐parametric methods such as cross‐validation for a reliable uncertainty quantification of model‐averaged predictions

    The power of monitoring: optimizing survey designs to detect occupancy changes in a rare amphibian population

    Get PDF
    Biodiversity conservation requires reliable species assessments and rigorously designed surveys. However, determining the survey effort required to reliably detect population change can be challenging for rare, cryptic and elusive species. We used a tropical bromeliad-dwelling frog as a model system to explore a cost-effective sampling design that optimizes the chances of detecting a population decline. Relatively few sampling visits were needed to estimate occupancy and detectability with good precision, and to detect a 30% change in occupancy with 80% power. Detectability was influenced by observer expertise, which therefore also had an effect on the sampling design – less experienced observers require more sampling visits to detect the species. Even when the sampling design provides precise parameter estimates, only moderate to large changes in occupancy will be detected with reliable power. Detecting a population change of 15% or less requires a large number of sites to be surveyed, which might be unachievable for range-restricted species occurring at relatively few sites. Unless there is high initial occupancy, rare and cryptic species will be particularly challenging when it comes to detecting small population changes. This may be a particular issue for long-term monitoring of amphibians which often display low detectability and wide natural fluctuations
    corecore