117 research outputs found
A cost effectiveness analysis of salt reduction policies to reduce coronary heart disease in four Eastern Mediterranean countries.
BACKGROUND: Coronary Heart Disease (CHD) is rising in middle income countries. Population based strategies to reduce specific CHD risk factors have an important role to play in reducing overall CHD mortality. Reducing dietary salt consumption is a potentially cost-effective way to reduce CHD events. This paper presents an economic evaluation of population based salt reduction policies in Tunisia, Syria, Palestine and Turkey. METHODS AND FINDINGS: Three policies to reduce dietary salt intake were evaluated: a health promotion campaign, labelling of food packaging and mandatory reformulation of salt content in processed food. These were evaluated separately and in combination. Estimates of the effectiveness of salt reduction on blood pressure were based on a literature review. The reduction in mortality was estimated using the IMPACT CHD model specific to that country. Cumulative population health effects were quantified as life years gained (LYG) over a 10 year time frame. The costs of each policy were estimated using evidence from comparable policies and expert opinion including public sector costs and costs to the food industry. Health care costs associated with CHDs were estimated using standardized unit costs. The total cost of implementing each policy was compared against the current baseline (no policy). All costs were calculated using 2010 PPP exchange rates. In all four countries most policies were cost saving compared with the baseline. The combination of all three policies (reducing salt consumption by 30%) resulted in estimated cost savings of 39,000,000 and 31674 LYG in Syria; 1,3000,000,000 and 378439 LYG in Turkey. CONCLUSION: Decreasing dietary salt intake will reduce coronary heart disease deaths in the four countries. A comprehensive strategy of health education and food industry actions to label and reduce salt content would save both money and lives
The influence of processing parameters on morphology and granulometry of a wet-milled sol-gel glass powder
A quaternary bioactive sol-gel glass of high silica content was heat treated at different temperatures, and then wet ball milled under different balls-to-powder ratios. A total of sixteen experiments were performed to study in detail the effects of both experimental variables on the structure, morphology, particle size distributions and nitrogen adsorption isotherms. The balls–to–powder ratio exerts a tremendous influence on the final particle size distribution of the powders, while its effects on the pore volume and morphology are minimal. These structural features are mostly governed by the changes in calcination temperature. Therefore, understanding the specific roles of each experimental parameter is of paramount importance towards achieving optimum powders with the desired properties. This work sheds light on the importance of using a suitable combination of these two parameters for tuning the morphology and the granulometry of the sol-gel derived bioactive glass powders.publishe
Enhanced bioactivity of a rapidly-dried sol-gel derived quaternary bioglass
Novel quaternary (67Si-24Ca-10Na-8P) glass powders were successfully synthesised by sol-gel followed by two alternative drying schedules, conventional drying (CD) and an innovative fast drying (FD) process (200 times quicker). The glasses were thermally stabilised at 550 °C, and then characterised by different complementary techniques. The samples showed very similar silica network structures, with the FD one having slightly lower degree of polymerisation than the CD sample. This less polymerised, more open, network structure exhibited an improved bioactivity in simulated body fluid (SBF), probably also due to the apparent presence of poorly crystalline HAp in the stabilised glass powder. In contrast, the CD glass exhibited an unwanted secondary crystalline silica phase. Both glasses showed excellent biomineralisation upon immersion in SBF, being more pronounced in the case of FD with clear evidence of HAp formation after 4 h, while equivalent signs in the CD samples were only noticed after longer immersion periods between 8 h and 1 week.publishe
Robocasting of Cu 2+ & La 3+ doped sol–gel glass scaffolds with greatly enhanced mechanical properties: Compressive strength up to 14 MPa
This research details the successful fabrication of scaffolds by robocasting from high silica sol–gel glass doped with Cu 2+ or La 3+ . The parent HSSGG composition within the system SiO 2 –CaO–Na 2 O–P 2 O 5 [67% Si – 24% Ca – 5% Na – 4% P (mol%)] was doped with 5 wt% Cu 2+ or La 3+ (Cu5 and La5). The paper sheds light on the importance of copper and lanthanum in improving the mechanical properties of the 3–D printed scaffolds. 1 h wet milling was sufficient to obtain a bioglass powder ready to be used in the preparation of a 40 vol% solid loading paste suitable for printing. Moreover, Cu addition showed a small reduction in the mean particle size, while La exhibited a greater reduction, compared with the parent glass. Scaffolds with macroporosity between 300 and 500 µm were successfully printed by robocasting, and then sintered at 800 °C. A small improvement in the compressive strength (7–18%) over the parent glass accompanied the addition of La. However, a much greater improvement in the compressive strength was observed with Cu addition, up to 221% greater than the parent glass, with compressive strength values of up to ∼14 MPa. This enhancement in compressive strength, around the upper limit registered for human cancellous bones, supports the potential use of this material in biomedical applications. Statement of Significance: 3D porous bioactive glass scaffolds with greatly improved compressive strength were fabricated by robocasting from a high silica sol–gel glasses doped with Cu 2+ or La 3+ . In comparison to the parent glass, the mechanical performance of scaffolds was greatly improved by copper-doping (>220%), while a modest increase of ∼9% was registered for lanthanum-doping. Doping ions (particularly La 3+ ) acted as glass modifiers leading to less extents of silica polymerisation. This favoured the milling of the glass powders and the obtaining of smaller mean particle sizes. Pastes with a high solid loading (40 vol%) and with suitable rheological properties for robocasting were prepared from all glass powders. Scaffolds with dimensions of 3 × 3 × 4 mm and macro-pore sizes between 300 and 500 µm were fabricated
Robocasting of Cu2+ & La3+ doped sol-gel glass scaffolds with greatly enhanced mechanical properties: compressive strength up to 14 MPa
This research details the successful fabrication of scaffolds by robocasting from high silica sol-gel glass doped with Cu2+ or La3+. The parent HSSGG composition within the system SiO2-CaO-Na2O-P2O5 [67% Si - 24% Ca - 5% Na - 4% P (mol%)] was doped with 5 wt% Cu2+ or La3+ (Cu5 and La5). The paper sheds light on the importance of copper and lanthanum in improving the mechanical properties of the 3-D printed scaffolds. 1 h wet milling was sufficient to obtain a bioglass powder ready to be used in the preparation of a 40 vol% solid loading paste suitable for printing. Moreover, Cu addition showed a small reduction in the mean particle size, while La exhibited a greater reduction, compared with the parent glass. Scaffolds with macroporosity between 300 and 500 µm were successfully printed by robocasting, and then sintered at 800 °C. A small improvement in the compressive strength (7-18%) over the parent glass accompanied the addition of La. However, a much greater improvement in the compressive strength was observed with Cu addition, up to 221% greater than the parent glass, with compressive strength values of up to ∼14 MPa. This enhancement in compressive strength, around the upper limit registered for human cancellous bones, supports the potential use of this material in biomedical applications. STATEMENT OF SIGNIFICANCE: 3D porous bioactive glass scaffolds with greatly improved compressive strength were fabricated by robocasting from a high silica sol-gel glasses doped with Cu2+ or La3+. In comparison to the parent glass, the mechanical performance of scaffolds was greatly improved by copper-doping (>220%), while a modest increase of ∼9% was registered for lanthanum-doping. Doping ions (particularly La3+) acted as glass modifiers leading to less extents of silica polymerisation. This favoured the milling of the glass powders and the obtaining of smaller mean particle sizes. Pastes with a high solid loading (40 vol%) and with suitable rheological properties for robocasting were prepared from all glass powders. Scaffolds with dimensions of 3 × 3 × 4 mm and macro-pore sizes between 300 and 500 µm were fabricated.publishe
Robocasting: Prediction of ink printability in solgel bioactive glass
Bioactive glass powders synthesized by solgel are usually porous and exhibit high specific surface areas, conferring them poor ability for scaffolds fabrication using colloidal processing approaches. The difficulties associated with colloidal processing of solgel glass have hindered so far the processing of 3-D scaffolds by robocasting. This research paper investigates the importance of calcination temperature (CT) and balls to powder ratio (BPR) used upon wet milling on the maximum achievable solid loading in aqueous media. The effects of CT, BPR, and solid loading on the flow behavior and viscoelastic properties of the suspensions/pastes were evaluated in this preliminary work. The aim is to disclose the sets of experimental variables that are most promising for the formulation of printable inks, and open the way for the future fabrication of porous scaffolds by robocasting and other 3-D additive manufacturing techniques
The role of calcium (source & content) on the in vitro behaviour of sol–gel quaternary glass series
To highlight the effect of salt precursors on the final properties, bioactivity and biocompatibility, five quaternary (Si–Ca–P–Na) glass compositions were successfully prepared through two distinct rapid sol–gel routes; one using acetate salt precursors (A) catalysed by nitric acid, and the other using nitrate salts (N) and citric acid as a catalyst. The sols dried rapidly, and stabilised at 550 & 800 °C to be characterised by X–ray diffraction (XRD), Magic angle spinning–Nuclear magnetic resonance (29Si MAS–NMR) and Fourier transform infra–red spectroscopy (FTIR). Upon immersion in simulated body fluid (SBF), hydroxyapatite (HAp) formation was initially enhanced by increasing Ca–content up to 40 mol%, but the formation of calcite was favoured with further increments of Ca to 45 and 48 mol%. The A–glasses exhibited lower density and lower network connectivity compared with N–glasses. The chemical surface modifications after 4 h in SBF were more evident for N–glasses in comparison to A–glasses. The biocompatibility is favoured for the samples treated at 800 °C and for the samples of the higher silica contents.publishe
The role of calcium (source & content) on the in vitro behaviour of sol–gel quaternary glass series
To highlight the effect of salt precursors on the final properties, bioactivity and biocompatibility, five quaternary (Si–Ca–P–Na) glass compositions were successfully prepared through two distinct rapid sol–gel routes; one using acetate salt precursors (A) catalysed by nitric acid, and the other using nitrate salts (N) and citric acid as a catalyst. The sols dried rapidly, and stabilised at 550 & 800 °C to be characterised by X–ray diffraction (XRD), Magic angle spinning–Nuclear magnetic resonance (29Si MAS–NMR) and Fourier transform infra–red spectroscopy (FTIR). Upon immersion in simulated body fluid (SBF), hydroxyapatite (HAp) formation was initially enhanced by increasing Ca–content up to 40 mol%, but the formation of calcite was favoured with further increments of Ca to 45 and 48 mol%. The A–glasses exhibited lower density and lower network connectivity compared with N–glasses. The chemical surface modifications after 4 h in SBF were more evident for N–glasses in comparison to A–glasses. The biocompatibility is favoured for the samples treated at 800 °C and for the samples of the higher silica contents
Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient
Robocasting of ceramic glass scaffolds: Sol–gel glass, new horizons
This article reports the first robocasting of a sol–gel based glass ceramic scaffold. Sol–gel bioactive glass powders usually exhibit high volume fractions of meso– and micro–porosities, bad for colloidal processing as this adsorbs significant portion of the dispersing medium, affecting dispersion and flow. We circumvent these practical difficulties, to achieve pastes with particle size distributions, high solids loading and appropriate rheological properties for extrusion through fine nozzles for robocasting. Scaffolds with different macro-pore sizes (300–500 μm) with solid loadings up to 40 vol.% were robocast. The sintered (800 °C, 2 h) scaffolds exhibited compressive strength of 2.5–4.8 MPa, formed hydroxyapatite after 72 h in SBF, and had no cytotoxicity and a considerable MG63 cells viability rate. These features make the scaffolds promising candidates for tissue engineering applications and worthy for further in vivo investigations
- …
