61 research outputs found

    Effects of mist fractions on heat transfer characteristics in a rotating roughened cooling passage

    Get PDF
    This paper investigates the effects of the mist fractions on heat transfer characteristics applied on a rotating U-channel with inclined ribs at an angle of 45°. This study has been conducted on five different mist percentages from 1 to 5 with a 1% increment at each step, and all of the cases have been investigated for Reynolds number values of 5000, 10000, 25000 and 40000. The numerical results obtained from the application of RNG k-ε turbulence model with enhanced-wall function were in good agreement with the experimental data of the smooth and ribbed channels both with and without mist addition. Results also demonstrated a 300% increase in the flow temperature difference and a noticeable increase in Nusselt number at each bend region and at the downstream of the leading edge around 25% and 110% respectively, at high mist fraction (5%); when compared with the case where only air was used. With %5 mist addition, the convective efficiency also reaches approximately 69%

    Developing a digital competence framework for UAE law enforcement agencies to enhance cyber security of Critical Physical Infrastructure (CPI)

    Get PDF
    Critical Physical Infrastructures (CPI) are assets and systems that are vital to the health, safety, security, and economic or social well-being of people, and have become increasingly vulnerable to cyberattacks that have the potential to cause severe debilitating and destructive impact on a nation’s economic security or public health and safety. The United Arab Emirates (UAE) has experienced a high level of cyberattacks targeted at its critical physical infrastructure which has also undergone rapid modernisation, digitisation and interconnection of systems that could expose it to potential vulnerabilities in cyberspace. This thesis addresses a major challenge in the capacity of law enforcement to address cyberattacks in respect of the digital capabilities that are necessary to maintain pace with technologies and respond effectively in a digital environment. The purpose of this study is to develop a digital competences framework for UAE law enforcement agencies to combat cyber security threats facing CPI. This identifies the key functions and role of law enforcement and prioritises primary domains and elements of digital competency for cyber security that are critical for law enforcement to perform its role in protecting CPI. A holistic case study design using multiple methods to generate qualitative and quantitative data is adopted. A Delphi method is applied over multiple stages aimed at achieving consensus among experts and professionals using open and semi-structured interviews, analytical hierarchy process (AHP), quantitative survey and group building methods. The sample consists of 25 experts from different law enforcement organisations and from different roles and different levels of the organisation. The findings present a digital competency framework for cybersecurity of CPI which models a holistic socio-technical approach and evaluation of digital competency requirements in line with the different functions and roles of law enforcement. Digital competency is conceptualised as an interplay of multiple interconnected dimensions including balance, type and relevance of training and future proofing. The highest ranked digital competencies for law enforcement to protect CPI are identified as Investigate, Analyse, Collect and Operate and Protect and Defend. The three highest ranked specialty areas are Cyber Investigation, Digital Forensics and All-Source Analysis. Cybercrime Investigator, Law Enforcement/Counterintelligence Forensics Analyst, and All-Source Analyst are the highest ranked work roles. The framework identifies knowledge skills and ability competencies for each of these domains. This study makes a novel contribution to theory of digital competency in identifying and prioritising key factors and processes for the design and implementation of digital competency development. The study prioritises the competences and speciality areas of digital competency and the associated knowledge, skills and abilities (KSAs) in the area of law enforcement for enhancing security of CPI

    Flow structure and heat transfer of jet impingement on a rib-roughened flat plate

    Get PDF
    The jet impingement technique is an effective method to achieve a high heat transfer rate and is widely used in industry. Enhancing the heat transfer rate even minimally will improve the performance of many engineering systems and applications. In this numerical study, the convective heat transfer process between orthogonal air jet impingement on a smooth, horizontal surface and a roughened uniformly heated flat plate is studied. The roughness element takes the form of a circular rib of square cross-section positioned at different radii around the stagnation point. At each location, the effect of the roughness element on heat transfer rate was simulated for six different heights and the optimum rib location and rib dimension determined. The average Nusselt number has been evaluated within and beyond the stagnation region to better quantify the heat transfer advantages of ribbed surfaces over smooth surfaces. The results showed both flow and heat transfer features vary significantly with rib dimension and location on the heated surface. This variation in the streamwise direction included both augmentation and decrease in heat transfer rate when compared to the baseline no-rib case. The enhancement in normalized averaged Nusselt number obtained by placing the rib at the most optimum radial location R/D = 2 was 15.6% compared to the baseline case. It was also found that the maximum average Nusselt number for each location was achieved when the rib height was close to the corresponding boundary layer thickness of the smooth surface at the same rib position

    Effect of mist/steam uniformity on heat transfer characteristics in unconfined jet impingement

    Get PDF
    This paper presents the numerical investigations of the injection of mist into an unconfined cooling steam jet to analyze the effects on the corresponding heat transfer characteristics. The infusion of mist into an confined cooling steam jet demonstrates a remarkable improvement in the heat transfer specifications as described in numerous previous studies. Therefore, the current research contributes to the knowledge by focusing on the uniformity configurations of the injected second phase to the unconfined regions and the influence of the surrounding environment on the mist injected. Several variables govern the physical model of the mist concentration and jet to plate distance, which is included in three-dimensional incompressible Navier-Stokes flow with the discrete phase model for the multiphase flow regime. The simulation was conducted over a range of common working Reynolds numbers. The results show that controlling the uniformity of the injected mist will redefine the cooling characteristics. The accumulated mist near the edge leads to the heat transfer enhancement at H/D = 2, 4, and 6. The surrounding environment had a significant influence on the droplet behavior at H/D = 8, thus causing a heat transfer reduction of 8%. The droplet Stock number can determine the droplet performance on the target wall and introducing mist generates a third heat transfer peak that results in an average increase of 38% for 1% mist

    Numerical investigation on heat transfer performance and flow characteristics in a roughened vortex chamber

    Get PDF
    In this study, an investigation of a vortex chamber was carried out to gain a full understanding of the nature of the vortex flow and the cooling capability inside the chamber. The paper discusses the effects on flow and heat transfer rates when the inside surface of the vortex chamber was roughened by adding flow turbulators to its wall. The turbulators took the shape of a rib with a square cross-section, the dimension of which varied between 0.25 mm and 2.00 mm. The paper also presents the results of a comparative investigation of jet impingement and vortex cooling on a concave wall using different parameters, such as the total pressure loss coefficient, Nusselt number and thermal performance factor, to evaluate the cooling effectiveness and flow dynamics. Furthermore, the entropy generation in swirl flow with the roughened wall was assessed over a wide range of Reynolds numbers. In this study, an investigation of a vortex chamber was carried out to gain a full understanding of the nature of the vortex flow and the cooling capability inside the chamber. The paper discusses the effects on flow and heat transfer rates when the inside surface of the vortex chamber was roughened by adding flow turbulators to its wall. The turbulators took the shape of a rib with a square cross-section, the dimension of which varied between 0.25 mm and 2.00 mm. The paper also presents the results of a comparative investigation of jet impingement and vortex cooling on a concave wall using different parameters, such as the total pressure loss coefficient, Nusselt number and thermal performance factor, to evaluate the cooling effectiveness and flow dynamics. Furthermore, the entropy generation in swirl flow with the roughened wall was assessed over a wide range of Reynolds numbers. The results show that surface roughness considerably influences the velocity distribution, heat transfer patterns and pressure drop in the vortex chamber. The highest thermal performance factor takes place at rib heights of 0.25 mm and 0.50 mm with a low Re number. Further increase in rib height has an adverse impact on thermal performance. At a Reynolds number lower than 50,000, it is highly recommended to use roughened vortex cooling to obtain the best thermal performance

    Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke).

    Get PDF
    BACKGROUND: Endovascular treatment with mechanical thrombectomy (MT) is beneficial for patients with acute stroke suffering a large-vessel occlusion, although treatment efficacy is highly time-dependent. We hypothesized that interhospital transfer to endovascular-capable centers would result in treatment delays and worse clinical outcomes compared with direct presentation. METHODS: STRATIS (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke) was a prospective, multicenter, observational, single-arm study of real-world MT for acute stroke because of anterior-circulation large-vessel occlusion performed at 55 sites over 2 years, including 1000 patients with severe stroke and treated within 8 hours. Patients underwent MT with or without intravenous tissue plasminogen activator and were admitted to endovascular-capable centers via either interhospital transfer or direct presentation. The primary clinical outcome was functional independence (modified Rankin Score 0-2) at 90 days. We assessed (1) real-world time metrics of stroke care delivery, (2) outcome differences between direct and transfer patients undergoing MT, and (3) the potential impact of local hospital bypass. RESULTS: A total of 984 patients were analyzed. Median onset-to-revascularization time was 202.0 minutes for direct versus 311.5 minutes for transfer patients ( CONCLUSIONS: In this large, real-world study, interhospital transfer was associated with significant treatment delays and lower chance of good outcome. Strategies to facilitate more rapid identification of large-vessel occlusion and direct routing to endovascular-capable centers for patients with severe stroke may improve outcomes. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02239640

    Ultrafine grained plates of Al-Mg-Si alloy obtained by Incremental Equal Channel Angular Pressing : microstructure and mechanical properties

    Get PDF
    In this study, an Al-Mg-Si alloy was processed using via Incremental Equal Channel Angular Pressing (I-ECAP) in order to obtain homogenous, ultrafine grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90˚ rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 - 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53-57 % depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminium with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength - more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications

    Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite

    Get PDF
    This investigation examines the problem of homogenization in metal matrix composites (MMCs) and the methods of increasing their strength using severe plastic deformation (SPD). In this research MMCs of pure copper and silicon carbide were synthesized by spark plasma sintering (SPS) and then further processed via highpressure torsion (HPT). The microstructures in the sintered and in the deformed materials were investigated using Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM). The mechanical properties were evaluated in microhardness tests and in tensile testing. The thermal conductivity of the composites was measured with the use of a laser pulse technique. Microstructural analysis revealed that HPT processing leads to an improved densification of the SPS-produced composites with significant grain refinement in the copper matrix and with fragmentation of the SiC particles and their homogeneous distribution in the copper matrix. The HPT processing of Cu and the Cu-SiC samples enhanced their mechanical properties at the expense of limiting their plasticity. Processing by HPT also had a major influence on the thermal conductivity of materials. It is demonstrated that the deformed samples exhibit higher thermal conductivity than the initial coarse-grained samples
    • …
    corecore