120 research outputs found

    Nostalgia as a psychological resource for people with dementia: A systematic review and meta-analysis of evidence of effectiveness from experimental studies

    Get PDF
    Objective: This review systematically examines evidence relating to the effect of nostalgia on psychological well-being through a meta-analysis of measures of social connectedness, self-esteem, meaning in life, self-continuity, optimism and positive and negative affect. Rationale: If nostalgia is to be used as a clinical intervention to boost well-being in dementia by reducing threat, then it is important to assess its therapeutic potential. Results: Searches carried out in July 2014 and updated in February 2018 identified 47 eligible experimental studies comparing nostalgic reminiscence and non-nostalgic reminiscence to be included in the meta-analysis. Nostalgic reminiscence had moderate effects on positive affect (0.51 (0.37, 0.65), p= 0.001), social connectedness (0.72 (0.57, 0.87), p= 0.001), self-esteem (0.50 (0.30, 0.70), p= 0.001), meaning in life (0.77 (0.47, 1.08), p= 0.001) and optimism (0.38 (0.28, 0.47), p= 0.001) and a large effect on self-continuity (0.81 (0.55, 1.07), p= 0.001). There was, however, no difference between the effect of nostalgic reminiscence and non-nostalgic reminiscence for negative affect (−0.06 (−0.20, 0.09), p= 0.443). Conclusion: This systematic review and meta-analysis provides an overview of the evidence base for nostalgia. This is an important stage in developing nostalgia as a clinical intervention for people with dementia which might be achieved, for instance, by adapting current reminiscence and life review techniques. This meta-analysis will therefore also serve as a valuable reference point for the continued exploration of nostalgia as an intervention

    The Biosurveillance Analytics Resource Directory (BARD): Facilitating the Use of Epidemiological Models for Infectious Disease Surveillance

    Get PDF
    Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models

    Candida albicans Pma1p Contributes to Growth, pH Homeostasis, and Hyphal Formation

    Get PDF
    Candida albicans occupies diverse ecological niches within the host and must tolerate a wide range of environmental pH. The plasma membrane H+-ATPase Pma1p is the major regulator of cytosolic pH in fungi. Pma1p extrudes protons from the cytosol to maintain neutral-to-alkaline pH and is a potential drug target due to its essentiality and fungal specificity. We characterized mutants in which one allele of PMA1 has been deleted and the other truncated by 18–38 amino acids. Increasing C-terminal truncation caused corresponding decreases in plasma membrane ATPase-specific activity and cytosolic pH. Pma1p is regulated by glucose: glucose rapidly activates the ATPase, causing a sharp increase in cytosolic pH. Increasing Pma1p truncation severely impaired this glucose response. Pma1p truncation also altered cation responses, disrupted vacuolar morphology and pH, and reduced filamentation competence. Early studies of cytosolic pH and filamentation have described a rapid, transient alkalinization of the cytosol preceding germ tube formation; Pma1p has been proposed as a regulator of this process. We find Pma1p plays a role in the establishment of cell polarity, and distribution of Pma1p is non-homogenous in emerging hyphae. These findings suggest a role of PMA1 in cytosolic alkalinization and in the specialized form of polarized growth that is filamentation

    Evolutionary Emergence of microRNAs in Human Embryonic Stem Cells

    Get PDF
    Human embryonic stem (hES) cells have unique abilities to divide indefinitely without differentiating and potential to differentiate into more than 200 cell types. These properties make hES cells an ideal model system for understanding early human development and for regenerative medicine. Molecular mechanisms including cellular signaling and transcriptional regulation play important roles in hES cell differentiation. However, very little information is available on posttranscriptional regulation of hES cell pluripotency, self-renewal, and early decisions about cell fate. microRNAs (miRNAs), 22-nt long non-coding small RNAs found in plants and animals, regulate gene expression by targeting mRNAs for cleavage or translation repression. In hES cells we found that 276 miRNAs were expressed; of these, a set of 30 miRNAs had significantly changed expression during differentiation. Using a representative example, miR-302b, we show that miRNAs in human ES cells assemble into a bona fide RISC that contains Ago2 and can specifically cleave perfectly matched target RNA. Our results demonstrate that human ES cell differentiation is accompanied by changes in the expression of a unique set of miRNAs, providing a glimpse of a new molecular circuitry that may regulate early development in humans. Chromosomes 19 and X contained 98 and 40 miRNA genes, respectively, indicating that majority of miRNA genes in hES cells were expressed from these two chromosomes. Strikingly, distribution analysis of miRNA gene loci across six species including dog, rat, mouse, rhesus, chimpanzee, and human showed that miRNA genes encoded in chromosome 19 were drastically increased in chimpanzees and humans while miRNA gene loci on other chrosmomes were decreased as compared with dog, rat, and mouse. Comparative genomic studies showed 99% conservation of chromosome 19 miRNA genes between chimpanzees and humans. Together, these findings reveal the evolutionary emergence, ∌5 million years ago, of miRNAs involved in regulating early human development. One could imagine that this burst of miRNA gene clusters at specific chromosomes was part of an evolutionary event during species divergence

    RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-Derived Stromal Stem Cells

    Get PDF
    Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition.Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs) and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation.Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs

    Nasopharyngeal Colonization and Invasive Disease Are Enhanced by the Cell Wall Hydrolases LytB and LytC of Streptococcus pneumoniae

    Get PDF
    Background: Streptococcus pneumoniae is a common colonizer of the human nasopharynx and one of the major pathogens causing invasive disease worldwide. Dissection of the molecular pathways responsible for colonization, invasion, and evasion of the immune system will provide new targets for antimicrobial or vaccine therapies for this common pathogen. Methodology/Principal Findings: We have constructed mutants lacking the pneumococcal cell wall hydrolases (CWHs) LytB and LytC to investigate the role of these proteins in different phases of the pneumococcal pathogenesis. Our results show that LytB and LytC are involved in the attachment of S. pneumoniae to human nasopharyngeal cells both in vitro and in vivo. The interaction of both proteins with phagocytic cells demonstrated that LytB and LytC act in concert avoiding pneumococcal phagocytosis mediated by neutrophils and alveolar macrophages. Furthermore, C3b deposition was increased on the lytC mutant confirming that LytC is involved in complement evasion. As a result, the lytC mutant showed a reduced ability to successfully cause pneumococcal pneumonia and sepsis. Bacterial mutants lacking both LytB and LytC showed a dramatically impaired attachment to nasopharyngeal cells as well as a marked degree of attenuation in a mouse model of colonization. In addition, C3b deposition and phagocytosis was more efficient for the double lytB lytC mutant and its virulence was greatly impaired in both systemic and pulmonary models of infection. Conclusions/Significance: This study confirms that the CWHs LytB and LytC of S. pneumoniae are essential virulence factor

    Comparative Study of Hematopoietic Differentiation between Human Embryonic Stem Cell Lines

    Get PDF
    Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34+ or CD34+CD45+ hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34+ precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34+ hematopoietic precursors generated in vitro versus in vivo

    Variability in childhood allergy and asthma across ethnicity, language, and residency duration in El Paso, Texas: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the impact of migration to the USA-Mexico border city of El Paso, Texas (USA), parental language preference, and Hispanic ethnicity on childhood asthma to differentiate between its social and environmental determinants.</p> <p>Methods</p> <p>Allergy and asthma prevalence was surveyed among 9797 fourth and fifth grade children enrolled in the El Paso Independent School District. Parents completed a respiratory health questionnaire, in either English or Spanish, and a sub-sample of children received spirometry testing at their school. Here we report asthma and allergy outcomes across ethnicity and El Paso residency duration.</p> <p>Results</p> <p>Asthma and allergy prevalence increased with longer duration of El Paso residency independent of ethnicity and preferred language. Compared with immigrants who arrived in El Paso after entering first grade (18%), lifelong El Paso residents (68%) had more prevalent allergy (OR, 1.72; 95% CI, 1.32 - 2.24), prevalent asthma (OR, 1.75; 95% CI, 1.24 - 2.46), and current asthma (OR, 2.01; 95% CI, 1.37 - 2.95). Spirometric measurements (FEV<sub>1</sub>/FVC and FEF<sub>25-75</sub>) also declined with increasing duration of El Paso residency (0.16% and 0.35% annual reduction, respectively).</p> <p>Conclusion</p> <p>These findings suggest that a community-wide environmental exposure in El Paso, delayed pulmonary development, or increased health of immigrants may be associated with allergy and asthma development in children raised there.</p

    Evolutionarily Conserved Transcriptional Co-Expression Guiding Embryonic Stem Cell Differentiation

    Get PDF
    Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation.We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFbeta and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs.Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a "road-map" for further experimental investigation

    Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns

    Get PDF
    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells
    • 

    corecore