23 research outputs found

    Genetic risk for schizophrenia and psychosis in Alzheimer disease

    Get PDF
    Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD), affecting ~40 to 60% of individuals with AD (AD with psychosis (AD+P)). In comparison with AD subjects without psychosis, AD+P subjects have more rapid cognitive decline and poor outcomes. Prior studies have estimated the heritability of psychosis in AD at 61%, but the underlying genetic sources of this risk are not known. We evaluated a Discovery Cohort of 2876 AD subjects with (N=1761) or without psychosis (N=1115). All subjects were genotyped using a custom genotyping array designed to evaluate single-nucleotide polymorphisms (SNPs) with evidence of genetic association with AD+P and include SNPs affecting or putatively affecting risk for schizophrenia and AD. Results were replicated in an independent cohort of 2194 AD subjects with (N=734) or without psychosis (N=1460). We found that AD+P is associated with polygenic risk for a set of novel loci and inversely associated with polygenic risk for schizophrenia. Among the biologic pathways identified by the associations of schizophrenia SNPs with AD+P are endosomal trafficking, autophagy and calcium channel signaling. To the best of our knowledge, these findings provide the first clear demonstration that AD+P is associated with common genetic variation. In addition, they provide an unbiased link between polygenic risk for schizophrenia and a lower risk of psychosis in AD. This provides an opportunity to leverage progress made in identifying the biologic effects of schizophrenia alleles to identify novel mechanisms protecting against more rapid cognitive decline and psychosis risk in AD

    Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordPsychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD with psychosis, AD + P). AD + P affects ~50% of individuals with AD, identifies a subgroup with poor outcomes, and is associated with a greater degree of cognitive impairment and depressive symptoms, compared to subjects without psychosis (AD − P). Although the estimated heritability of AD + P is 61%, genetic sources of risk are unknown. We report a genome-wide meta-analysis of 12,317 AD subjects, 5445 AD + P. Results showed common genetic variation accounted for a significant portion of heritability. Two loci, one in ENPP6 (rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p = 1.26 × 10−8) and one spanning the 3′-UTR of an alternatively spliced transcript of SUMF1 (rs201109606, O.R. 0.65 (0.56–0.76), p = 3.24 × 10−8), had genome-wide significant associations with AD + P. Gene-based analysis identified a significant association with APOE, due to the APOE risk haplotype ε4. AD + P demonstrated negative genetic correlations with cognitive and educational attainment and positive genetic correlation with depressive symptoms. We previously observed a negative genetic correlation with schizophrenia; instead, we now found a stronger negative correlation with the related phenotype of bipolar disorder. Analysis of polygenic risk scores supported this genetic correlation and documented a positive genetic correlation with risk variation for AD, beyond the effect of ε4. We also document a small set of SNPs likely to affect risk for AD + P and AD or schizophrenia. These findings provide the first unbiased identification of the association of psychosis in AD with common genetic variation and provide insights into its genetic architecture.National Institute on Aging (NIA

    Genetic association between APOE*4 and neuropsychiatric symptoms in patients with probable Alzheimer's disease is dependent on the psychosis phenotype

    No full text
    Abstract Background Neuropsychiatric symptoms such as psychosis are prevalent in patients with probable Alzheimer’s disease (AD) and are associated with increased morbidity and mortality. Because these disabling symptoms are generally not well tolerated by caregivers, patients with these symptoms tend to be institutionalized earlier than patients without them. The identification of protective and risk factors for neuropsychiatric symptoms in AD would facilitate the development of more specific treatments for these symptoms and thereby decrease morbidity and mortality in AD. The E4 allele of the apolipoprotein E (APOE) gene is a well-documented risk factor for the development of AD. However, genetic association studies of the APOE 4 allele and BPS in AD have produced conflicting findings. Methods This study investigates the association between APOE and neuropsychiatric symptoms in a large sample of clinically well-characterized subjects with probable AD (n=790) who were systematically evaluated using the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Behavioral Rating Scale for Dementia (BRSD). Results Our study found that hallucinations were significantly more likely to occur in subjects with no APOΕ4 alleles than in subjects with two Ε4 alleles (15% of subjects and 5% of subjects, respectively; p=.0066), whereas there was no association between the occurrence of delusions, aberrant motor behavior, or agitation and the number of Ε4 alleles. However, 94% of the subjects with hallucinations also had delusions (D+H). Conclusion These findings suggest that in AD the Ε4 allele is differentially associated with D+H but not delusions alone. This is consistent with the hypothesis that distinct psychotic subphenotypes may be associated with the APOE allele.</p

    Genome-wide association study of Alzheimer's disease with psychotic symptoms

    Get PDF
    International audiencePsychotic symptoms occur in approximately 40% of subjects with Alzheimer's disease (AD) and are associated with more rapid cognitive decline and increased functional deficits. They show heritability up to 61% and have been proposed as a marker for a disease subtype suitable for gene mapping efforts. We undertook a combined analysis of three genome-wide association studies (GWAS) to identify loci that a) increase susceptibility to an AD and subsequent psychotic symptoms; or b) modify risk of psychotic symptoms in the presence of neurodegeneration caused by AD. 1299 AD cases with psychosis (AD+P), 735 AD cases without psychosis (AD-P) and 5659 controls were drawn from GERAD1, the NIA-LOAD family study and the University of Pittsburgh ADRC GWAS. Unobserved genotypes were imputed to provide data on > 1.8 million SNPs. Analyses in each dataset were completed comparing a) AD+P to AD-P cases, and b) AD+P cases with controls (GERAD1, ADRC only). Aside from the APOE locus, the strongest evidence for association was observed in an intergenic region on chromosome 4 (rs753129; 'AD+PvAD-P' P=2.85 x 10-7; 'AD+PvControls' P=1.11 x 10-4). SNPs upstream of SLC2A9 (rs6834555, P=3.0x10-7) and within VSNL1 (rs4038131, P=5.9x10-7) showed strongest evidence for association with AD+P when compared to controls. These findings warrant further investigation in larger, appropriately powered samples in which the presence of psychotic symptoms in AD has been well characterised
    corecore