11,125 research outputs found

    The Free-Free Opacity in Warm, Dense, and Weakly Ionized Helium

    Full text link
    We investigate the ionization and the opacity of warm, dense helium under conditions found in the atmospheres of cool white dwarf stars. Our particular interest is in densities up to 3g/cm3\rm 3 g/cm^{3} and temperatures from 1000K to 10000K. For these physical conditions various approaches for modeling the ionization equilibrium predict ionization fractions that differ by orders of magnitudes. Furthermore, estimates of the density at which helium pressure-ionizes vary from 0.3\rm 0.3 to 14g/cm3\rm 14 g/cm^{3}. In this context, the value of the electron-atom inverse bremsstrahlung absorption is highly uncertain. We present new results obtained from a non-ideal chemical model for the ionization equilibrium, from Quantum Molecular Dynamics (QMD) simulations, and from the analysis of experimental data to better understand the ionization fraction in fluid helium in the weak ionization limit.Comment: 4 pages, 3 figures, 1 table. Accepted for publication in the Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, M

    Near-UV absorption in very cool DA white dwarfs

    Full text link
    The atmospheres of very cool, hydrogen-rich white dwarfs (Teff <6000 K) are challenging to models because of the increased complexity of the equation of state, chemical equilibrium, and opacity sources in a low-temperature, weakly ionized dense gas. In particular, many models that assume relatively simple models for the broadening of atomic levels and mostly ideal gas physics overestimate the flux in the blue part of their spectra. A solution to this problem that has met with some success is that additional opacity at short wavelengths comes for the extreme broadening of the Lyman alpha line of atomic H by collisions primarily with H2. For the purpose of validating this model more rigorously, we acquired Hubble Space Telescope STIS spectra of 8 very cool white dwarfs (5 DA and 3 DC stars). Combined with their known parallaxes, BVRIJHK and Spitzer IRAC photometry, we analyze their entire spectral energy distribution (from 0.24 to 9.3 micron) with a large grid of model atmospheres and synthetic spectra. We find that the red wing of the Lyman alpha line reproduces the rapidly decreasing near-UV flux of these very cool stars very well. We determine better constrained values of Teff and gravity as well as upper limits to the helium abundance in their atmospheres.Comment: 41 pages, 9 figures. Accepted for publication in the Ap

    Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three

    Full text link
    We determine, for all three-dimensional non-unimodular Lie groups equipped with a Lorentzian metric, the set of homogeneous geodesics through a point. Together with the results of [C] and [CM2], this leads to the full classification of three-dimensional Lorentzian g.o. spaces and naturally reductive spaces

    A simple model of ocean temperature re-emergence and variability

    Get PDF
    A simple stochastic one-dimensional model of interannual mid-latitude sea surface temperature (SST) variability that can be solved analytically is developed. A novel two-season approach is adopted, with the annual cycle divided into two seasons denoted summer and winter. Within each season the mixed layer depth is constant, and the transition of the mixed layer from summer to winter and vice versa is discontinuous. SST anomalies are forced by random atmospheric heat fluxes, assumed to be constant within each season for simplicity, with linear damping to represent atmospheric feedback. At the start of summer the initial SST anomaly is set equal to that at the end of the previous winter, and at the start of winter the initial temperature anomaly is found by instantaneously mixing the summer mixed layer with the heat stored below in the deeper winter mixed layer, thereby explicitly taking into account the ‘re-emergence mechanism’. Two simple auto-regressive equations for the summer and winter SST anomalies are obtained that can be easily solved. Model parameters include seasonal damping coefficients, mixed layer depths and standard deviations of the atmospheric forcing. Analytic expressions for season-to-season correlation and variability and power spectra are used to explore and illustrate the effects of the parameters quantitatively. Among the results it is found that, with regard to winter-to-winter temperature correlation, the re-emergence pathway is more influential than persistence via the summer mixed layer when the winter layer is more than twice the depth of the summer layer. With regard to winter temperature variability, the effect of a deeper winter mixed layer is to decrease the sensitivity to surface forcing and thus decrease variability, but also to increase persistence via re-emergence and thus increase variance at multidecadal scales

    The status and future of EUV astronomy

    Full text link
    The Extreme Ultraviolet wavelength range was one of the final windows to be opened up to astronomy. Nevertheless, it provides very important diagnostic tools for a range of astronomical objects, although the opacity of the interstellar medium restricts the majority of observations to sources in our own galaxy. This review gives a historical overview of EUV astronomy, describes current instrumental capabilities and examines the prospects for future facilities on small and medium-class satellite platforms.Comment: Published in Advances in Space Researc

    Scalar field theory on κ\kappa-Minkowski space-time and Doubly Special Relativity

    Full text link
    In this paper we recall the construction of scalar field action on κ\kappa-Minkowski space-time and investigate its properties. In particular we show how the co-product of κ\kappa-Poincar\'e algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction Φ4\Phi^4 term we investigate the modified conservation laws. We show that the local interactions on κ\kappa-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.Comment: 17 pages; some editing done, final version to be published in Int. J. Mod. Phys.

    Nuclear Structure Calculations with Coupled Cluster Methods from Quantum Chemistry

    Full text link
    We present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same model space and other truncated shell-model calculations shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei, with much less computational effort than traditional large-scale shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged shell-model calculations with four or more major shells are not possible. However, these and even larger systems can be studied with the coupled cluster methods due to the polynomial rather than factorial scaling inherent in standard shell-model studies. This makes the coupled cluster approaches, developed in quantum chemistry, viable methods for describing weakly bound systems of interest for future nuclear facilities.Comment: 10 pages, Elsevier latex style, Invited contribution to INPC04 proceedings, to appear in Nuclear Physics

    A large stellar evolution database for population synthesis studies: VI. White dwarf cooling sequences

    Get PDF
    We present a new set of cooling models and isochrones for both H- and He-atmosphere white dwarfs, incorporating accurate boundary conditions from detailed model atmosphere calculations, and carbon-oxygen chemical abundance profiles based on updated stellar evolution calculations from the BaSTI stellar evolution archive - a theoretical data center for the Virtual Observatory. We discuss and quantify the uncertainties in the cooling times predicted by the models, arising from the treatment of mixing during the central H- and He-burning phases, number of thermal pulses experienced by the progenitors, progenitor metallicity and the 12C(α,γ)16O^{12}C(\alpha,\gamma)^{16}O reaction rate. The largest sources of uncertainty turn out to be related to the treatment of convection during the last stages of the progenitor central He-burning phase, and the 12C(α,γ)16O^{12}C(\alpha,\gamma)^{16}O reaction rate. We compare our new models to previous calculations performed with the same stellar evolution code, and discuss their application to the estimate of the age of the solar neighborhood, and the interpretation of the observed number ratios between H- and He-atmosphere white dwarfs. The new white dwarf sequences and an extensive set of white dwarf isochrones that cover a large range of ages and progenitor metallicities are made publicly available at the official BaSTI website.Comment: 34 pages, 13 figures, The Astrophysical Journal, in pres
    corecore