8,319 research outputs found

    2MASS wide field extinction maps: II. The Ophiuchus and the Lupus cloud complexe

    Full text link
    We present an extinction map of a ~1,700 deg sq region that encloses the Ophiuchus, the Lupus, and the Pipe dark complexes using 42 million stars from the Two Micron All Sky Survey (2MASS) point source catalog. The use of a robust and optimal near-infrared method to map dust column density (Nicer, described in Lombardi & Alves 2001) allow us to detect extinction as low as A_K = 0.05 mag with a 2-sigma significance, and still to have a resolution of 3 arcmin on our map. We also present a novel, statistically sound method to characterize the small-scale inhomogeneities in molecular clouds. Finally, we investigate the cloud structure function, and show that significant deviations from the results predicted by turbulent models are observed.Comment: 16 pages, A&A in pres

    Prioritization of hazards by means of a QFD-based procedure

    Get PDF
    Despite the evolution of regulations in the field of occupational health and safety promoted in EU countries, the number of accidents and victims has not significantly decreased in recent years, especially in constructions and agriculture sectors, as underlined by official reports of the Italian Workers' Compensation Authority. Main reasons of such a situation are due to the characteristics of working activities in these sectors. The variety of operations, the frequent exchange of tasks among workers within the same company, the continuous change of workplaces, the frequent exchange of workers for the same activity (e.g. seasonal workers), and the workers’ stress caused by seasonal jobs. For these reasons both risk assessment and safety management activities result in being more difficult than in other working sectors. Thus, it is important to provide methodologies and tools that allow companies to carry out these tasks more effectively. In such a context, the study proposed by Esra Bas in 2014 certainly represents an attempt to provide a supporting methodology for engineers engaged in risk assessment activities. This approach consists in the use of the Quality Function Deployment (QFD) method, and it is aimed at evaluating how specific tasks can be in relationship with specific hazards, which in turn are related to specific events, and finally at defining what preventive/protective measures can be introduced against those events. Based on this, we tried to further investigate such an approach, with the goal of providing an easier-to-use tool, which can be used in risk assessment activities of critical contexts as the agriculture one. With this aim in mind, a case study concerning the risk assessment of an agricultural machinery was carried out

    The three-point correlation function of cosmic shear. II: Relation to the bispectrum of the projected mass density and generalized third-order aperture measures

    Full text link
    We study the relation of the three-point cosmic shear statistics to the third-order statistical properties of the underlying convergence, expressed in terms of its bispectrum. Explicit relations for the natural components of the shear three-point correlation function in terms of the bispectrum are derived. The behavior of the correlation function under parity transformation is obtained and found to agree with previous results. We find that in contrast to the two-point shear correlation function, the three-point function at a given angular scale \theta is not affected by power in the bispectrum on much larger scales. These relations are then inverted to obtain the bispectrum in terms of the three-point shear correlator; two different expressions, corresponding to different natural components of the shear correlator, are obtained and can be used to separate E and B-mode shear contributions. These relations allow us to explicitly show that correlations containing an odd power of B-mode shear vanish for parity-symmetric fields. Generalizing a recent result by Jarvis et al., we derive expressions for the third-order aperture measures, employing multiple angular scales, in terms of the (natural components of the) three-point shear correlator and show that they contain essentially all the information about the underlying bispectrum. We discuss the many useful features these (generalized) aperture measures have that makes them convenient for future analyses of the skewness of the cosmic shear field (and any other polar field, such as the polarization of the Cosmic Microwave Background). (Abridged)Comment: 18 pages, 3 figures, minor changes made, one paragraph and two figures added. Matches the published versio

    The noise of cluster mass reconstructions from a source redshift distribution

    Get PDF
    The parameter-free reconstruction of the surface-mass density of clusters of galaxies is one of the principal applications of weak gravitational lensing. From the observable ellipticities of images of background galaxies, the tidal gravitational field (shear) of the mass distribution is estimated, and the corresponding surface mass density is constructed. The noise of the resulting mass map is investigated here, generalizing previous work which included mainly the noise due to the intrinsic galaxy ellipticities. Whereas this dominates the noise budget if the lens is very weak, other sources of noise become important, or even dominant, for the medium-strong lensing regime close to the center of clusters. In particular, shot noise due to a Poisson distribution of galaxy images, and increased shot noise owing to the correlation of galaxies in angular position and redshift, can yield significantly larger levels of noise than that from the intrinsic ellipticities only. We estimate the contributions from these various effects for two widely used smoothing operations, showing that one of them effectively removes the Poisson and the correlation noises related to angular positions of galaxies. Noise sources due to the spread in redshift of galaxies are still present in the optimized estimator and are shown to be relevant in many cases. We show how (even approximate) redshift information can be profitably used to reduce the noise in the mass map. The dependence of the various noise terms on the relevant parameters (lens redshift, strength, smoothing length, redshift distribution of background galaxies) are explicitly calculated and simple estimates are provided.Comment: 18 pages, A&A in pres

    «Omnia vincit Amor. Poética del Amor», de Luigi M. Lombardi Satriani

    Get PDF
    Reseña del libro Omnia vincit amor. Poética del amor (intr. y ed. de María Pilar Panero García, trad. de Maria La Grotteria, Ediciones Universidad de Salamanca, Col. Et caetera, 58, Salamanca, 2021), de Luigi M. Lombardi Satriani

    Improving the accuracy of mass reconstructions from weak lensing: from the shear map to the mass distribution

    Get PDF
    In this paper we provide a statistical analysis of the parameter-free method often used in weak lensing mass reconstructions. It is found that a proper assessment of the errors involved in such a non-local analysis requires the study of the relevant two-point correlation functions. After calculating the two-point correlation function for the reduced shear, we determine the expected error on the inferred mass distribution and on other related quantities, such as the total mass, and derive the error power spectrum. This allows us to optimize the reconstruction method, with respect to the kernel used in the inversion procedure. In particular, we find that curl-free kernels are bound to lead to more accurate mass reconstructions. Our analytical results clarify the arguments and the numerical simulations by Seitz & Schneider (1996).Comment: 11 pages and 2 Postscript figures, uses A&A TeX macros. Submitted to A&A. Changed conten

    Hipparcos distances of Ophiuchus and Lupus cloud complexes

    Full text link
    We combine extinction maps from the Two Micron All Sky Survey (2MASS) with Hipparcos and Tycho parallaxes to obtain reliable and high-precision estimates of the distance to the Ophiuchus and Lupus dark complexes. Our analysis, based on a rigorous maximum-likelihood approach, shows that the rho-Ophiuchi cloud is located at (119 +/- 6) pc and the Lupus complex is located at (155 +/- 8) pc; in addition, we are able to put constraints on the thickness of the clouds and on their orientation on the sky (both these effects are not included in the error estimate quoted above). For Ophiuchus, we find some evidence that the streamers are closer to us than the core. The method applied in this paper is currently limited to nearby molecular clouds, but it will find many natural applications in the GAIA-era, when it will be possible to pin down the distance and three-dimensional structure of virtually every molecular cloud in the Galaxy.Comment: A&A in press - Corrected typo (Lupus distance) in the electronic abstrac

    Weak lensing and cosmology

    Get PDF
    Recently, it has been shown that it is possible to reconstruct the projected mass distribution of a cluster from weak lensing provided that both the geometry of the universe and the probability distribution of galaxy redshifts are known; actually, when additional photometric data are taken to be available, the galaxy redshift distribution could be determined jointly with the cluster mass from the weak lensing analysis. In this paper we develop, in the spirit of a ``thought experiment,'' a method to constrain the geometry of the universe from weak lensing, provided that the redshifts of the source galaxies are measured. The quantitative limits and merits of the method are discussed analytically and with a set of simulations, in relation to point estimation, interval estimation, and test of hypotheses for homogeneous Friedmann-Lemaitre models. The constraints turn out to be significant when a few thousand source galaxies are used.Comment: 17 pages, 8 figures. Uses A&A LaTeX style. Accepted for pubblication by A&A. Several changes made: new model for the lens; Sect. 7 and App. A. adde

    Improving the accuracy of mass reconstructions from weak lensing: local shear measurements

    Get PDF
    Different options can be used in order to measure the shear from observations in the context of weak lensing. Here we introduce new methods where the isotropy assumption for the distribution of the source galaxies is implemented directly on the observed quadrupole moments. A quantitative analysis of the error associated with the finite number of source galaxies and with their ellipticity distribution is provided, applicable even when the shear is not weak. Monte Carlo simulations based on a realistic sample of source galaxies show that our procedure generally leads to errors ~30% smaller than those associated with the standard method of Kaiser and Squires (1993).Comment: 9 pages and 3 Postscript figures, uses A&A TeX macros. To be published in A&

    Variational Estimates using a Discrete Variable Representation

    Full text link
    The advantage of using a Discrete Variable Representation (DVR) is that the Hamiltonian of two interacting particles can be constructed in a very simple form. However the DVR Hamiltonian is approximate and, as a consequence, the results cannot be considered as variational ones. We will show that the variational character of the results can be restored by performing a reduced number of integrals. In practice, for a variational description of the lowest n bound states only n(n+1)/2 integrals are necessary whereas D(D+1)/2 integrals are enough for the scattering states (D is the dimension of the S matrix). Applications of the method to the study of dimers of He, Ne and Ar, for both bound and scattering states, are presented.Comment: 30 pages, 7 figures. Minor changes (title modified, typos corrected, 1 reference added). To be published in PR
    • …
    corecore