140 research outputs found
Responses of Private and Public Schools to Voucher Funding: The Czech and Hungarian Experience
A state monopoly in schooling followed the collapse of communism in Central Europe. The centrally planned system was abandoned. Systems comparable with educational voucher scheme, also known as school choice system, were introduced in the Czech Republic and Hungary in the early 1990s. The newly established system of school financing allocates public funds according to the number of students enrolled in a school. Accredited non-state schools, private and religious, are also eligible for public subsidies. The scope and the form of these reforms represent a unique opportunity to test conflicting hypotheses of proponents and opponents of the voucher scheme. In this empirical analysis, we test fundamental theoretical predictions of the voucher model. Specifically, we test: i) whether non-state schools are established at locations where the supply of educational opportunities provided by state schools is low or of low quality, ii) whether state and non-state schools in such a system respond to changes in demand for education, and iii) whether state schools respond to competition from non-state schools. We use detailed school level data on the whole population of schools and data on regional conditions. In our econometric model we estimate education value added, instead of relying on absolute quality of school graduates. We find that non-state schools emerge at locations with excess demand and lower quality state schools. We also find that greater competition from non-state schools creates incentives for state schools with the result that state schools slightly improve the quality of educational inputs used and significantly improve their output, quality of graduates. As concerns the technical schools, we find that non-state schools react to regional labor market conditions in terms of technical branch premium and unemployment rate. We do not find such reactions to market signals by state schools. We introduce this analysis with a review of non-state schools' development in the Czech Republic and Hungary during the 1990s.http://deepblue.lib.umich.edu/bitstream/2027.42/39744/3/wp360.pd
Responses of Private and Public Schools to Voucher Funding:The Czech and Hungarian Experience
A state monopoly in schooling followed the collapse of communism in Central Europe. The centrally planned system was abandoned. Systems comparable with educational voucher scheme, also known as school choice system, were introduced in the Czech Republic and Hungary in the early 1990s. The newly established system of school financing allocates public funds according to the number of students enrolled in a school. Accredited non-state schools, private and religious, are also eligible for public subsidies. The scope and the form of these reforms represent a unique opportunity to test conflicting hypotheses of proponents and opponents of the voucher scheme. In this empirical analysis, we test fundamental theoretical predictions of the voucher model. Specifically, we test: i) whether non-state schools are established at locations where the supply of educational opportunities provided by state schools is low or of low quality, ii) whether state and non-state schools in such a system respond to changes in demand for education, and iii) whether state schools respond to competition from non-state schools. We use detailed school level data on the whole population of schools and data on regional conditions. In our econometric model we estimate education value added, instead of relying on absolute quality of school graduates. We find that non-state school emerge at locations with excess demand and lower quality state schools. We also find that greater competition from non-state schools creates incentives for state schools with the result that state schools slightly improve the quality of educational inputs used and significantly improve their output, quality of graduates. As concerns the technical schools, we find that non-state schools react to regional labor market conditions in terms of technical branch premium and unemployment rate. We do not find such reactions to market signals by state schools. We introduce this analysis with a review of non-state schools' development in the Czech Republic and Hungary during the 1990s.Educational Finance, Government Expenditures and Education, Occupational Choice, Labor Productivity
Cosmic Neutrino Bound on the Dark Matter Annihilation Rate in the Late Universe
How large can the dark matter self-annihilation rate in the late universe be?
This rate depends on (rho_DM/m_chi)^2 , where rho_DM/m_chi is the
number density of dark matter, and the annihilation cross section is averaged
over the velocity distribution. Since the clustering of dark matter is known,
this amounts to asking how large the annihilation cross section can be.
Kaplinghat, Knox, and Turner proposed that a very large annihilation cross
section could turn a halo cusp into a core, improving agreement between
simulations and observations; Hui showed that unitarity prohibits this for
large dark matter masses. We show that if the annihilation products are
Standard Model particles, even just neutrinos, the consequent fluxes are ruled
out by orders of magnitude, even at small masses. Equivalently, to invoke such
large annihilation cross sections, one must now require that essentially no
Standard Model particles are produced.Comment: 4 pages, 2 figures; to appear in the proceedings of the TeV Particle
Astrophysics II Workshop, Madison, Wisconsin, 28-31 Aug 200
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Muon Track Reconstruction and Data Selection Techniques in AMANDA
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy
neutrino telescope operating at the geographic South Pole. It is a lattice of
photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m.
The primary goal of this detector is to discover astrophysical sources of high
energy neutrinos. A high-energy muon neutrino coming through the earth from the
Northern Hemisphere can be identified by the secondary muon moving upward
through the detector. The muon tracks are reconstructed with a maximum
likelihood method. It models the arrival times and amplitudes of Cherenkov
photons registered by the photo-multipliers. This paper describes the different
methods of reconstruction, which have been successfully implemented within
AMANDA. Strategies for optimizing the reconstruction performance and rejecting
background are presented. For a typical analysis procedure the direction of
tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector
The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino
detector under construction at the geographic South Pole. The dominant
population of neutrinos detected in IceCube is due to meson decay in cosmic-ray
air showers. These atmospheric neutrinos are relatively well-understood and
serve as a calibration and verification tool for the new detector. In 2006, the
detector was approximately 10% completed, and we report on data acquired from
the detector in this configuration. We observe an atmospheric neutrino signal
consistent with expectations, demonstrating that the IceCube detector is
capable of identifying neutrino events. In the first 137.4 days of livetime,
234 neutrino candidates were selected with an expectation of 211 +/-
76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos
- âŠ