1,050 research outputs found

    Thin film dynamics on a vertically rotating disk partially immersed in a liquid bath

    Get PDF
    The axisymmetric flow of a thin liquid film is considered for the problem of a vertically rotating disk that is partially immersed in a liquid bath. A model for the fully three-dimensional free-boundary problem of the rotating disk, that drags a thin film out of the bath is set up. From this, a dimension-reduced extended lubrication approximation that includes the meniscus region is derived. This problem constitutes a generalization of the classic drag-out and drag-in problem to the case of axisymmetric flow. The resulting nonlinear fourth-order partial differential equation for the film profile is solved numerically using a finite element scheme. For a range of parameters steady states are found and compared to asymptotic solutions. Patterns of the film profile, as a function of immersion depth and angular velocity are discussed.Comment: 31 pages, 19 figures accepted: Applied Mathematical Modellin

    A thin film model for corotational Jeffreys fluids under strong slip

    Get PDF
    We derive a thin film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.Comment: 3 pages, submitted to Eur. Phys. J.

    Spin coating of an evaporating polymer solution

    Get PDF
    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of the thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and due to evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent volume fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system.\ud \ud The main practical interest is in controlling the appearance and development of a ``skin'' on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. The critical parameters controlling this behaviour are found to be ϵ\epsilon the ratio of the diffusion to advection time scales, δ\delta the ratio of the evaporation to advection time scales and exp(γ)\exp(\gamma), the ratio of the diffusivity of the initial mixture and the pure polymer. In particular, our analysis shows that for very small evaporation with δ<<exp(3/(4γ))ϵ3/4\delta << \exp(-3/(4\gamma)) \epsilon^{3/4} skin formation can be prevented

    Slip vs viscoelasticity in dewetting thin films

    Get PDF
    Ultrathin polymer films on non-wettable substrates display dynamic features which have been attributed to either viscoelastic or slip effects. Here we show that in the weak and strong slip regime effects of viscoelastic relaxation are either absent or not distinguishable from slip effects. Strong-slip modifies the fastest unstable mode in a rupturing thin film, which questions the standard approach to reconstruct the effective interface potential from dewetting experiments.Comment: 4 pages, submitted to Eur. Phys. J.

    A statistical procedure to adjust for time-interval mismatch in forensic voice comparison

    Get PDF
    The present paper describes a statistical modeling procedure that was developed to account for the fact that, in a forensic voice comparison analysis conducted for a particular case, there was a long time interval between when the questioned- and known-speaker recordings were made (six years), but in the sample of the relevant population used for training and testing the forensic voice comparison system there was a short interval (hours to days) between when each of multiple recordings of each speaker was made. The present paper also includes results of empirical validation of the procedure. Although based on a particular case, the procedure has potential for wider application given that relatively long time intervals between the recording of questioned and known speakers are not uncommon in casework

    Slip-controlled thin film dynamics

    Get PDF
    In this study, we present a novel method to assess the slip length and the viscosity of thin films of highly viscous Newtonian liquids. We quantitatively analyse dewetting fronts of low molecular weight polystyrene melts on Octadecyl- (OTS) and Dodecyltrichlorosilane (DTS) polymer brushes. Using a thin film (lubrication) model derived in the limit of large slip lengths, we can extract slip length and viscosity. We study polymer films with thicknesses between 50 nm and 230 nm and various temperatures above the glass transition. We find slip lengths from 100 nm up to 1 micron on OTS and between 300 nm and 10 microns on DTS covered silicon wafers. The slip length decreases with temperature. The obtained values for the viscosity are consistent with independent measurements.Comment: 4 figure

    Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy

    Get PDF
    The visualization and the quantification of microscopic decay patterns are important for the study of the impact of wood-decay fungi in general, as well as for wood-decay fungi and microorganisms with possible applications in biotechnology. In the present work, a method was developed for the automated localization and quantification of microscopic cell wall elements (CWE) of Norway spruce wood such as bordered pits, intrinsic defects, hyphae or alterations induced by white-rot fungus Physisporinus vitreus using high-resolution X-ray computed tomographic microscopy. In addition to classical destructive wood anatomical methods such as light or laser scanning microscopy, this method allows for the first time to compute the properties (e.g., area, orientation and size distribution) of CWE of the tracheids in a sample. This is essential for modeling the influence of microscopic CWE on macroscopic properties such as wood strength and permeabilit

    Taylor line swimming in microchannels and cubic lattices of obstacles

    Get PDF
    Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study in two dimensions an undulatory Taylor line swimming in a microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.DFG, GRK 1558, Kollektive Dynamik im Nichtgleichgewicht: in kondensierter Materie und biologischen SystemenDFG, SPP 1726, Mikroschwimmer - Von Einzelpartikelbewegung zu kollektivem Verhalte

    Gradient structures for flows of concentrated suspensions

    Get PDF
    In this work we investigate a two-phase model for concentrated suspensions. We construct a PDE formulation using a gradient flow structure featuring dissipative coupling between fluid and solid phase as well as different driving forces. Our construction is based on the concept of flow maps that also allows it to account for flows in moving domains with free boundaries. The major difference compared to similar existing approaches is the incorporation of a non-smooth two-homogeneous term to the dissipation potential, which creates a normal pressure even for pure shear flows
    corecore