
NeuroScrub: Mitigating Retention Failures Using
Approximate Scrubbing in Neuromorphic Fabric

Based on Resistive Memories
Soyed Tuhin Ahmed, Michael Hefenbrock, Christopher Münch, Mehdi B. Tahoori

Karlsruhe Institute of Technology (KIT)
soyed.ahmed@kit.edu, michael.hefenbrock@kit.edu, christopher.muench@kit.edu, mehdi.tahoori@kit.edu

Abstract—Neuromorphic computation-in-memory fabric based
on emerging non-volatile memories (NVM) is considered an
attractive option to accelerate neural networks (NNs) in hardware
as they provide high-performance, low-power, and reduced data
movement. Although NVMs offer many benefits, they are sus-
ceptible to data retention faults, where previously stored data
is not retained. This severely impacts the inference accuracy
of mapped NNs. Traditionally, memory scrubbing with error-
correcting codes (ECC) is employed to mitigate retention faults
in conventional CMOS memories. This is not feasible in NVM-
based neuromorphic fabric due to high overhead and inability
to represent encoding or decoding in analog computing. In
this work, we propose an approximate scrubbing technique
for NVM-based neuromorphic fabric to mitigate uni-directional
retention faults with minimal storage overhead. The training
of the NNs adjusted accordingly to meet the requirements of
the scrubbing scheme. On different benchmarks, the proposed
scrubbing approach can improve the inference accuracy up to
85.51% over the lifetime with virtually zero storage overhead.

I. INTRODUCTION

Complex computational tasks like image recognition and
sensor data processing for Internet-of-Things (IoT) devices are
the focus of modern computer architectures. Neural networks
(NNs) offer a compelling solution to these problems due to
their high performance in cognitive tasks. The inference of
NNs is usually carried out in computation-centric architec-
tures such as graphical processing units (GPUs) or special-
purpose hardware such as Tensor Processing Units (TPUs).
Although computation-centric architectures offer flexibility,
they are highly inefficient due to data movement between the
processing unit and the memory, resulting in the well-known
memory wall [1].

Emerging Non-Volatile Resistive Memories (NVMs) offer a
promising avenue to accelerate deep learning applications for
neuromorphic computing-in-memory (CiM). There are several
technologies like Resistive RAM (ReRAM) [2], Phase-Change
Memory (PCM) [3], and Spin Transfer Torque Magnetic RAM
(STT-MRAM) [4] that can be used to perform training and in-
ference of NNs directly in memory. Compared to conventional
static and dynamic RAM architectures, they allow for highly
scalable designs, which are non-volatile and can be operated
with low power consumption [5].

However, emerging NVM technologies also introduce ad-
ditional sources of failures, which need to be considered.
Particularly, the retention faults of NVM devices have a

significant influence on the performance of NVM-based NN
accelerators [6]. The retention faults are typically more likely
to happen uni-directional, which means that a memory cell in
one state is more likely to switch to the other state [7], [8].
Thus, the accuracy of a NN accelerator with NVM storage
drops drastically over its lifetime if retention faults are not
mitigated [9].

One way to mitigate this for STT-MRAMs is to increase
thermal stability [10]. However, this leads to increased write
energy and influences the resistive behavior of the Low Re-
sistance State (LRS) and High Resistance State (HRS) of the
memory cell. In PCMs, the unused resistance ranges between
the resistive states (guard-band) can be increased to reduce
the retention fault rate, but the write latency increases as a
trade-off [11].

More generally, Error-Correcting Code (ECC)-based scrub-
bing is used to recover corrupted data in memory arrays [12].
ECC-based scrubbing adds redundant data bits to the memory
and can detect and correct failures within a certain limit
depending on the accepted hardware overhead. This overhead
is not practical for neuromorphic computing, which needs
large NVM arrays. Hence, a significant number of redundant
cells will be required. Moreover, the encoding, decoding, and
correction required for the ECC-based scrubbing cannot be
implemented in analog neuromorphic computing.

We propose a scrubbing technique to counteract technology-
dependent uni-directional retention faults (HRS to LRS or vice
versa, depending on the particular technology) in NVM cells
used for neuromorphic computing. The technique is based on
the fact that neural networks can tolerate a certain amount
of retention faults without suffering too much in accuracy (as
demonstrated in [6]). The proposed scrubbing technique only
corrects uni-directional faults in the scrub area and thereby
only approximately restores the intended weight matrices in
the NVM memory. The main contributions of this work are:
• We introduce an approximate scrubbing technique to mit-

igate retention failures. For this, the NVM-based crossbar
used for the hidden layers of NNs is divided into two
areas, where unstable and stable NN weights are mapped,
respectively.

• We introduce a novel NN training technique that adjusts
the weight matrix to our scrubbing requirement during
training.

• We present extensive experimental results on various
datasets to confirm that our proposed scrubbing technique
can improve the final inference accuracy up to 85.51%
over the device lifetime without notable memory over­
head.

The rest of the paper is structured as follows. Section II
covers the background and related work to our approach. In
Section m, the main ideas and motivation of our proposed
scrubbing and training approach are presented. Finally, Sec­
tion IV presents our simulation framework and results, while
Section V concludes the paper.

II. BACKGROUND

A. Retention Failures in NVMs

Retention failures are a major reliability issue in NVMs.
ldeally, after an NVM cell is written, its content is expected
to be stored until the next write operation. However, due
to extemal influences, the cell may lose its datum or the
written resistance drifts in multi-level NVMs. Additionally,
most NVMs have an asymmetrical flip behavior, making it
more probable for an NVM cell to change to a specific state
over time [7], [13].

In the case of the Magnetic Tunnel Junction (MTJ), which is
the storage element of STI-MRAM, the energy barrier from
the HRS to the LRS is lower than the barrier from LRS to
HRS, making it more probable for an MTJ to switch from the
HRS to the LRS than the other way around [8]. Additionally,
increasing the temperature lowers the effective energy barrier,
which in turn increases the possibility of retention faults [14].

Changing the dimension of an MTJ is a typical design
choice to vary the thermal stability. Decreasing the thennal
stability also enables smaller access transistors resulting in
a denser memory array. However, as the energy barrier is
directly related to the cell's thermal stability, this results in a
higher probability of retention faults [15]. Similarly, when the
dimension of ReRAM devices is scaled-down, their reliability
degrades and they perform unpredictably [16].

B. Neural Networks (NNs)

Neural networks (NNs) are biologically inspired computa­
tion graphs, constructed out of so-called neurons that fonn
their fundamental building blocks. A neuron expresses a
composition of a linear function of its inputs and a nonlinear
function referred to as an activation function. Most commonly,
the computational results of several neurons are combined in
so-called layers. Tue most basic ones being densely connected
layers can be expressed as

Layer(x) = ef> (W x + b)

where the vector x = [x1, • • • , xi, • • •]T is the vector of
inputs xi, ef>(·) referring to the activation function (applied
element-wise) and W and b denoting the weight matrix and
the bias vector, respectively. Aside from simple layers of
neurons, various other layers, such as nonnalization layers,

,;

X2 . ·i··· a2

�j{ ",.
\/

_1:;;l • _
Synaptk

$)1011.ptic t,1cur1.>n
N...,..,

0--............ -...... ---
0 -+-,,....-t..,.,..+-,....---

0--............ -...... ---

0 --+-,,,.-+,,,,,-+-,,,----+-,..-

P,�

Fig. 1. (a) A single layer of a fully connected NN, (b) crossbar array with
resistive NVM cells, receives inputs as an analog voltage. The trained weights
w of the NN are mapped to the crossbars array as resistive states r of the
NVM cells. A sense amplifier (SA) determines each neuron fires or not.

have been proposed [17]. Through a set of layers, an NN f0 (x)
is constructed as a composition of them, i.e.,

f0(x) = (LayerL o•••oLayer1 o•••oLayer1) (x).

For brevity, the parameter vector 0 summarizes all pa­
rameters, e.g., the weight matrices W1 and biases b1 of
all layers l = 1, • • -L. To train an NN on some data
'D = {(x<n> ,y(n))}�=l• consisting of inputs x and expected
output y pairs from a given task, its parameters 0 are mini­
rnized with respect to some loss function Loss(B, 'D), i.e.,

mm Loss(B, 'D)
6

Tue loss function is task-specific, and expresses the quality of
the match between y and f0 (x).

Usually, NNs have fixed-point weights and activation that
requires a higher memory size to store the trained weights
and are computationally expensive. Binary Neural Networks

(BNNs) use binary (+1 or -1) weights and activation func­
tions during their inference and require only 1-bit to store
a single trained weight [18]. By reducing the bit-width of
the weights from a multi-bit fixed point to a single-bit per
weight, we can directly map an NN layer to an NVM crossbar.
This allows us to use their in-memory computation capabilities
to perform the neuromorphic operations directly within the
memory. Fig. 1 shows how a fully connected neural network
is mapped to an NVM-based crossbar structure.

A one-time write operation is used to map the trained
weights of the BNN to the crossbar arrays, where each connec­
tion of two layers is represented by one crossbar. Resistance
values r of the NVM cells represent the NN weights w.

More specifically, in this paper synaptic +1 (unstable) and
-1 (stable) weights are represented with HRS and LRS cells,
respectively. Note that this can be decided based on the NVM
technology and direction of state change. The NN inputs for
the inference are applied as an analog voltage to every row
of the crossbar array. Multiple worldlines rows are activated
concurrently and a weighted sum operation is performed in
parallel. Each of the input voltage is multiplied by each NVM's

conductance, and the resulting current is accumulated colurnn­
wise on the bitline. Each neuron's activation is computed using

a sense amplifier (SA), which determines if the neuron fires
or not depending on the bitline current [l]. To calculate the
result of a neuron, first all rows with an input value of + 1
are enabled and the number of HRS cells are evaluated. In the
second step, all rows with an input of -1 are enabled and the
number of LRS cells are evaluated Adding the HRS result to
the LRS result yields the result of the operation.

C. Related Work

Checksum-based error correction is proposed for RRAM­

based crossbars in [19]. However, rnemory overhead and
power consumption do not scale weil with the size of the
crossbar. In [20], an ECC-based scrubbing technique for STT­
MRAM is proposed, which has a 12.5% storage overhead. An
adaptive scrubbing technique to mitigate retention faults in the
cache based on STT-MRAM is proposed in [15]. They grouped
the rnemory cells based on their retention time and adjusted the
scrubbing interval with respect to the operating temperature.
A training adaptation to reduce the number of HRS in the
crossbar so that the number of uni-directional switching can
be reduced is proposed in [6]. They also proposed a hybrid
crossbar array with mixed retention cells to mitigate retention
failures, but these crossbars are difficult to manufacture.

Blind scrubbing has previously been used in FPGA devices
to mitigate single-event upset (SEU) errors [21]. This scrub­
bing technique does not require expensive checks for error
detection. Instead, it blindly overwrites the specified memory
region at a pre-specified frequency. Usually, blind scrubbing
requires storing information about the scrub region. In this
work, we employ a blind scrubbing technique while keeping
the scrubbing cost to a minimum.

III. MITIGATING RETENTION FAILURES THROUGH BLIND

SCRUBBING

A. Main ldea and Motivation

As discussed before, the direction of the uni-directional state
change is technology dependant. In MTJ based NVM cross­
bars, state changes from + 1 -+ -1 are far more common than
retention faults in the other direction -1 -+ + 1. Therefore,
these uni-directional retention faults accumulate over time and
severely impact the inference accuracy after a certain period.

We propose an approximate scrubbing technique to prevent
the accumulation of uni-directional faults. The main idea
behind the approach is to define a scrub region S where
most unstable + 1 weights are stored. This region can then
be frequently scrubbed to restore the respective values. The
scrubbing frequency is optimized based on the used NVM

technology, device parameters and environment such as oper­
ating temperature.

The scrubbing controller receives the information about the
scrub region's shape and scrub frequency. lt re-writes that
region (row/column-wise) to +1 weights. As a result, the
accumulation of errors can be prevented Hence, degradation
of the inference accuracy of the NN can be mitigated either
completely or partially. While some -1 weights that may have
been stored in the scrubbing region S will be overwritten

n

1r, 11'"1 -1

+1 1b +1

R1 -1
+1 +1

+l p.,
1"2 -1

-1
m

+1
+l -1

-1 -1 -1

-1 -1

(a) (b)

Fig. 2. (a) A Crossbar (m = n) showing different possible scrub and non­
scrub areas with different diagonals d. (b) A Crossbar (m < n) showing
rectangular shaped (R1 and R2) scrub area. Each scrub area reguires storing
two points (P1 and P2).

to + ls, our hypothesis is that a few of these faults will
not significantly impair the inference accuracy. For the non­
scrubbing region S', no scrubbing is performed since weights
in that region are considered stable.

There are two key challenges associated with our proposed
technique. Firstly, the challenge is to define the shape of the
scrub region while maintaining low scrubbing costs. Each
scrub area requires storing information about the size of the
scrub region S. To avoid significant memory overhead, the
space complexity of the definition of S should ideally be
kept constant, i.e., 0(1). Secondly, the NN training should
be encouraged to store most of the + 1 weights in S while
minimizing the number of -1 weights. Conversely, since the
weights in the non-scrubbing region S' are not scrubbed, it
should mainly contain the stable -1 weights.

B. Proposed Scrubbing Technique

As described before, our objective is to divide the crossbar
array into scrub area S and non-scrub area S', which contain
most of the +1 and -1 weights, respectively, while keeping
the cost of scrubbing to a minimum. Different shapes can
thereby define the scrub areas. Two examples of 0(1) scrub
area descriptions can be seen in Fig. 2. To define a diagonal
scrubbing region as shown in Fig. 2(a), we define a diagonal
d in the crossbar array, which separates the scrub area S

from the non-scrub area S'. Tue value of d is considered a
hyperparameter during training. Since this definition depends
only on a single integer d, the storage overhead is 0(1).
Tue top-right area above d thereby defines the scrub area
S, while the bottom-left defines S'. Increasing or decreasing
d can be visualized as the diagonal moving towards top­
right or bottom-left, respectively, as depicted in Fig. 2(a). The
diagonal shaped scrubbing region leads to a greater variation in
synaptic weights compared to the rectangular scrubbing region
depicted in Fig. 2 (b). Although, the number of rectangles can
be increased to increase variability, but it will require more
storage.

C. Proposed Training Technique

In NN training, the loss function expresses the preference
for solutions. Due to the employed scrubbing, we prefer

solutions with +1 and -1 in the respective regions (above : Tra;n;ngflow �-� ,----,':

or below the diagonal), as these entries will be less affected ' '
Rt>tention fauh Model

by retention faults. A penalty function augmenting the original :•� -�
---1

training objective can be designed to express this preference.
As training NNs is most commonly described as a min­

imization problem, the penalty function should exhibit its
minimum value at the most preferred configuration, i.e., where '
all +1 and -1 weights are in the correct region. Consequently,

Fault
lnjection

the more weights are placed outside of the respective region,
the higher the penalty. Note that many such penalty functions
can be designed that satisfies this property. For example

P(W) = L(l-w) + L (1 +w).
wES wES'

The penalty function can now be combined with the original
training objective, i.e., loss function, to form the new training
objective

L

Loss' (0, V) = Loss(0, V)+ L P(W1).
l=l

The definition of the loss function can be dynamically
adjusted during training to influence the training target. For
example, the loss function can be augmented by the penalty
(as described in Algorithm 1) when the network starts to store
weights of undesired values in the non-scrub and scrub area.

Algorithm 1 dynamically adjusts the loss function. (Non-)
Scrub Area Coverage SAG (SAG') is given as a percentage
of the desired weights in S (S'). The parameter th is the
corresponding augmentation threshold in percent.

for epoch = 1 to epochs do

if SAG< th or SAG'< th then

Loss'(0, V) +- Loss(0, V)+ Lf=l P(W1)
eise

Loss'(0, V)+- Loss(0, V)
end if

end for

IV. SIMULATION RESULTS

A. Simulation Setup

In this work, we focus on uni-directional faults in MTJ­
based crossbars, but the proposed methods can be applied
to mitigate retention faults in other emerging NVM-based
crossbars.

The probability of the retention faults depends on the ther­
mal stability factor f1 of the MTJs. In general, the lower the
thermal stability factor f1 of the MTJs, the higher the switch­
ing probability and the more uni-directional faults. Higher
uni-directional fault rates can lead to higher degradation in
inference accuracy over the device lifetime t = end, or the
expected time before the next weight matrix update [6].

Our training, fault-injection, and scrubbing simulation flow
are shown in Fig. 3. Tue fault is modeled as described in [6].
We have trained a six-layer (2048 neurons) NN with three
different datasets: MNIST, Fashion-MNIST, and CIFAR-3. We

Fig. 3. Overview of NN training and evaluation flow.

have used a constant learning rate, the ADAM optimizer [22],
and the cross-entropy loss function.

MNIST (handwritten digits) and Fashion-MNIST [23] have
28 x 28 gray-scale images representing handwritten digits
ranging from O to 9 (10 classes), and 10 classes of clothes.
Both datasets have 50K training images and lOK test images.
We did not use any data-augmentation or pre-processing for
these datasets. CIFAR-3 is a subset of the CIFAR-10 dataset
with only three output classes compared to ten classes in
CIFAR-10. lt has a 15K training set and a 3K test set. Each
image is colored with 32 x 32 pixels and represents either an
airplane, a bird, or a cat We refer to that dataset as CIFAR-3
in the following. Tue training and test images are resized to
28 x 28 as a pre-processing step.

We binarized our NN with the algorithm from [18], but
initialized it with a pre-trained floating-point NN. The pro­
posed cost function described in Section ill-C is used during
floating-point and BNN training.

Tue trained weight of the binary NN is mapped to six
different MTJ-based NVM crossbars for inference. Tue shape
of all hidden layers is [2048 x 2048], and they are mapped to
MTJ-based crossbars Hl , H2, H3, and H4 with a dimension (m
and n) of [2048 x 2048]. Due to hardware constraints, only a
limited number of wordlines are activated concurrently and the
partial current sum is accumulated to get the total current sum
for each step described in the last paragraph of Section II-B.
Tue activation function of each post-synaptic neuron is scaled
and shifted by BatchNorm parameters, which are deterministic
during inference.

Tue hidden layers have more parameters compared to the
first and last layer. Tue first layer's input and the last layer's
activation are non-binary. As a result, this work is focused on
retention failures in hidden layers only. We assume that the
input and the output layer weights are mapped to a crossbar
array with a high thermal stability factor b..

B. Analyzing lnference Accuracy with Scrubbing

We conducted two sets of experiments for each dataset: ref­
erence and proposed Tue training algorithm of the reference
NN is unaltered, and it is not scrubbed during the simulation.
Tue proposed NN model is trained with Algorithm 1, and a

Fault injected into Hl
100

... ___
--··-

-- •
--·---------- ----·

90 \ \ ',,,
-----

80 \ \ ',\ 1 1 ,

j 70
1 \ '
1 1 \

\ \ - Scrubbing with delta= 43, 40, 39, 38, 37
e 60

';/, so

� 40
./!
.Si 30

20

10

, , --- Ref. Model. No scn.ib. Delta= 43
� \ --... R.ef. Model, No Scrub, Delta = 40
\ \ --- Ref. Model, No Scrvb. Delta= 39
� \ --- R.ef. Model, NoScrub, Delta= 38
� \ --- Ref. Moctel. No Scrub. Delta= 37
\ \ '
' \ \ \ '

',, ... ,..

,, _______ ,, ____ a••••••-----------·

0 +--.----,----,--....--,-----,---.---r---r----;
o m m 30 � so w ro � � =

ewpected operational time(%)

Fig. 4. Impact of different thennal stability factor on inference accuracy with
MNIST dataset

value of th = 100 and d = 9 are chosen before training.
There are no weights with undesired values in S and S' after
training the proposed NN model, and it is scrubbed during the
simulation.

We have simulated the retention faults in ten steps, each
corresponding to 10% of the expected device lifetime. The
results are summarized in Table 1.

Retention faults are stochastic, which is effectively random
behavior. This leads the NN to predict the wrong class using
faulty weights. As a consequence, the inference accuracy can
vary with the same amount of failures. Tue results that are
shown in Table I are averaged over ten runs of independent
stochastic fault injections.

Our proposed scrubbing technique improves the inference
accuracy by more than 82.89%, 74.46%, and 30.80% in
MNIST, Fashion-MNIST, and CIFAR-3 datasets, respectively,
over the expected device lifetime. Although the initial infer­
ence accuracy at t = 0 is slightly better for the reference model
than for our proposed technique, the inference accuracy is
significantly better for our proposed scrubbing technique until
the end of the expected device lifetime (t = end). Please note
that CIFAR-3 has only three output classes and the probability
that the output is correct at random is 33%, w hieb is more than
three tirnes that of MNIST and Fashion-MNIST (10%) . As a
result, the inference accuracy degrades to around 33% under
retention faults, and our proposed scrubbing technique saves
more than 30.80%.

The inference accuracy of the proposed method does not
change with ß as opposed to the reference model, as shown
in Fig. 4. When the thermal stability factor ß is above 40, the
reference model performs better, but our proposed scrubbing
rnethod performs significantly better in the long run when the
thermal stability is below 40.

C. Analyzing lnference accuracy with Different Scrub Area

The scrub area can be changed before training and after
training by choosing different diagonal values d. In the pre-

TABLE I
EVALUATION OF DIFFERENT CROSSBARS (ONE AT A TIME) WITH OUR
PROPOSED SCRUBBING TECHNIQUE AND THE REFERENCE MODEL FOR

MNIST, FASHION-MNIST, AND CIFAR-3 DATASET. f:;. = 25 IS CHOSEN.

Dataset

MNIST

Fashion­
MNIST

Crossbar

H2
H3
H4

TABLE II
THE EFFECT OF CHANGING DIAGONAL ON INFERENCE ACCURACY AFTER
TRAINING. EVALUATED FOR MNIST DATASE T AND HI CROSSBAR WITH

t:,. =25.

Diagonal % of +1 % of -1 weights Accuracy
in S' in S att=end

100 8.73% 0% 92.56%
so 3.98% 0% 94.05%

9(original) 0% 0% 94.21%
-50 0% 5.44% 92.70%
-100 0% 9.51% 85.44%

vious section, a diagonal of 9 was chosen before training and
used during evaluation.

Increasing or decreasing the diagonal d' from the value
specified before training d will make the scrub area smaller or
bigger. The smaller the scrub area (d' > d), the more synaptic
+ 1 weights are subject to retention faults. On the other band,
with a !arger scrub area (d' < d), the more synaptic -1
weights are written to synaptic + 1 weights due to scrubbing,
as shown in Table II.

Due to the approximate nature of the NN, the inference
accuracy only degrades noticeably after the scrub area is made
significantly bigger (d' « d) or smaller (d' � d) compared
to the original scrub area defined before training. This shows
the robustness of the proposed approach.

Choosing a too high value for the NN training hyper­
parameter d before training will lead to a massive t = 0
inference accuracy degradation. The inference accuracy drops
to 75.76%, and 93.10% for MNIST when a value d = 1000
and d = 100 was chosen, respectively.

D. Relaxing the requirement of scrub and non-scrub areas

In Section IV-B, we analyzed the inference accuracy when
the scrub and non-scrub area only contain their desired values.
However, this requirement can be relaxed without severely
impacting the inference accuracy up to a certain point, as
shown in Table m.

When only the non-scrub area contains undesired weights,
the inference accuracy at the end of the device lifetime
degrades slightly. We found that a higher number of undesired

TABLE III
THE RESULT FOR THE FASHION-MNIST DATASET WITH THERMAL

STABILITY FACTOR (∆) = 25 WHEN ONLY NON-SCRUB AND BOTH AREAS
CONTAIN UNDESIRED WEIGHTS.

Crossbar % of +1 weights % of −1 Accuracy Accuracy
in S′ in S t = 0 t = end

Relaxed in Non-Scrub Area Only
H1 1.21% 0% 87.16% 86.37%
H2 2.65% 0% 87.16% 87.03%
H3 0.80% 0% 87.16% 86.91%
H4 1.99% 0% 87.16% 87.13%

Relaxed in Scrub and Non-Scrub Area
H1 0.45% 1.54% 85.81% 80.61%
H2 0.04% 2.81% 85.81% 85.67%
H3 1.23% 3.16% 85.81% 75.58%
H4 2.34% 4.52% 85.81% 75.95%

weights in the non-scrub area does not always lead to a lower
final inference accuracy.

Allowing undesired weights in both non-scrub and scrub
areas does not guarantee a higher initial inference than al-
lowing only undesired weights in the non-scrub area. In
our case, we get a slightly lower initial inference accuracy
(87.16% → 85.81%) for the Fashion-MNIST dataset. Also,
the inference accuracy degrades more at t = end compared
to the case of only undesired weights in the non-scrub area.
This is due to the combined effect of not protecting synaptic
+1 in the non-scrub and writing −1 weights in the scrub area
to +1.

There is a trade-off between the initial t = 0 inference
accuracy and the final t = end inference accuracy. Although
allowing some undesired weights in the scrub or non-scrub
areas increases the initial t = 0 inference accuracy, it can
reduce the inference accuracy at the end of the device lifetime,
especially when both scrub and non-scrub areas have undesired
weights. For example, the inference accuracy of H3 (75.58%)
and H4 (75.95%) at the end of device lifetime is lower in
comparison (84.46%) to the result from Section IV-B for the
Fashion-MNIST dataset. The results suggest that the scrub and
non-scrub areas should not be relaxed at the same time and
should not contain more than 3% of undesired weights, i.e.,
training the NN with Algorithm 1 and threshold th = 97.

V. CONCLUSION

In this work, we proposed an approximate scrubbing tech-
nique to mitigate uni-directional retention faults in resistive
NVM-based NN accelerators. Our proposed technique defines
a diagonal, which divides the crossbar into the scrub and non-
scrub area. Unstable HRS cells are mapped to the scrubbing
region and a scrubbing controller re-writes the scrubbing
region periodically to mitigate retention faults. We introduced
a training adaptation to minimize the number of LRS and HRS
cells in the scrubbing and non-scrubbing regions, respectively.
Our proposed scrubbing technique improves the inference
accuracy over the expected device lifetime up to 85.51% with
virtually zero memory overhead. It enables higher memory
density of the crossbar, and a reduction in write latency and
energy of certain NVMs without trading-off retention time.

REFERENCES

[1] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
Proceedings of the IEEE, vol. 106, no. 2, pp. 260–285, 2018.

[2] L. Ni et al., “Distributed in-memory computing on binary rram crossbar,”
J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, pp. 36:1–36:18, Mar.
2017. [Online]. Available: http://doi.acm.org/10.1145/2996192

[3] G. W. Burr et al., “Experimental demonstration and tolerancing of
a large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element,” IEEE Transactions on Electron
Devices, vol. 62, no. 11, pp. 3498–3507, 2015.

[4] D. Zhang et al., “Stochastic spintronic device based synapses and spiking
neurons for neuromorphic computation,” in Proc. IEEE/ACM Int. Symp.
Nanoscale Architectures (NANOARCH), Jul. 2016, pp. 173–178.

[5] D. Soudry et al., “Memristor-based multilayer neural networks with on-
line gradient descent training,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 10, pp. 2408–2421, Oct. 2015.

[6] C. Münch, R. Bishnoi, and M. B. Tahoori, “Tolerating retention failures
in neuromorphic fabric based on emerging resistive memories,” in 2020
25th Asia and South Pacific Design Automat. Conf. (ASP-DAC). IEEE,
2020, pp. 393–400.

[7] K. Hofmann et al., “Comprehensive statistical investigation of stt-
mram thermal stability,” in Symposium on VLSI Technology: Digest of
Technical Papers, June 2014, pp. 1–2.

[8] K. Tsunoda et al., “Area dependence of thermal stability factor in
perpendicular stt-mram analyzed by bi-directional data flipping model,”
in IEEE International Electron Devices Meeting, Dec 2014, pp. 19.3.1–
19.3.4.

[9] C. Münch, R. Bishnoi, and M. B. Tahoori, “Reliable in-memory neuro-
morphic computing using spintronics,” in Proceedings of the Asia and
South Pacific Design Automation Conference. ACM, 2019.

[10] A. Nigam et al., “Delivering on the promise of universal memory for
spin-transfer torque RAM (stt-RAM),” in Proc. IEEE/ACM Int. Symp.
Low Power Electronics and Design, Aug. 2011, pp. 121–126.

[11] M. Zhang et al., “Quick-and-dirty: Improving performance of mlc
pcm by using temporary short writes,” in 2017 IEEE International
Conference on Computer Design (ICCD), 2017, pp. 585–588.

[12] R. H. Morelos-Zaragoza, The art of error correcting coding. John
Wiley & Sons, 2006.

[13] J. Park et al., “Investigation of state stability of low-resistance state in
resistive memory,” IEEE Electron Device Letters, vol. 31, no. 5, pp.
485–487, 2010.

[14] Z. Diao et al., “Spin-transfer torque switching in magnetic tunnel
junctions and spin-transfer torque random access memory,” Journal of
Physics: Condensed Matter, vol. 19, no. 16, p. 165209, 2007.

[15] N. Sayed et al., “Process variation and temperature aware adaptive
scrubbing for retention failures in stt-mram,” in 2018 23rd Asia and
South Pacific Design Automat. Conf. (ASP-DAC), 2018, pp. 203–208.

[16] P. Hazra and J. K. B, “Scaling of resistive random access memory
devices beyond 100 nm2: Influence of grain boundaries studied using
scanning tunneling microscopy,” Nanotechnology, vol. 29, p. 495202,
12 2018.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[18] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[19] A. Das and N. A. Touba, “Selective checksum based on-line error
correction for rram based matrix operations,” in 2020 IEEE 38th VLSI
Test Symposium (VTS), 2020, pp. 1–6.

[20] X. Guo et al., “Sanitizer: Mitigating the impact of expensive ecc checks
on stt-mram based main memories,” IEEE Transactions on Computers,
vol. 67, no. 6, pp. 847–860, 2018.

[21] F. Brosser et al., “Assessing scrubbing techniques for xilinx sram-
based fpgas in space applications,” in Int. Conf. Field-Program. Technol.
(FPT), 2014, pp. 296–299.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

