125 research outputs found

    Searching for solar-like oscillations in pre-main sequence stars using APOLLO

    Full text link
    In recent years, our understanding of solar-like oscillations from main sequence to red giant stars has improved dramatically thanks to pristine data collected from space telescopes. One of the remaining open questions focuses around the observational identification of solar-like oscillations in pre-main sequence stars. We aim to develop an improved method to search for solar-like oscillations in pre-main sequence stars and apply it to data collected by the Kepler K2 mission. Our software APOLLO includes a novel way to detect low signal-to-noise ratio solar like oscillations in the presence of a high background level. By calibrating our method using known solar-like oscillators from the main Kepler mission, we apply it to T Tauri stars observed by Kepler K2 and identify several candidate pre-main sequence solar-like oscillators. We find that our method is robust even when applied to time-series of observational lengths as short as those obtained with the TESS satellite in one sector. We identify EPIC 205375290 as a possible candidate for solar-like oscillations in a pre-main sequence star with νmax242μ\nu_\mathrm{max} \simeq 242\,\muHz. We also derive EPIC 205375290's fundamental parameters to be TeffT_\mathrm{eff} = 3670±\pm180 K, log gg = 3.85±\pm0.3, vvsinii = 8 ±\pm 1 km s1^{-1}, and about solar metallicity from a high-resolution spectrum obtained from the Keck archive.Comment: 14 pages, 13 figure

    Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data

    Get PDF
    The brain systems underlying placebo analgesia are insufficiently understood. Here we performed a systematic, participant-level meta-analysis of experimental functional neuroimaging studies of evoked pain under stimulus-intensity-matched placebo and control conditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find that placebo vs. control treatments induce small, widespread reductions in pain-related activity, particularly in regions belonging to ventral attention (including mid-insula) and somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates with reduced pain-related activity in these networks and the thalamus, habenula, mid-cingulate, and supplementary motor area. Placebo-associated activity increases occur mainly in frontoparietal regions, with high between-study heterogeneity. We conclude that placebo treatments affect pain-related activity in multiple brain areas, which may reflect changes in nociception and/or other affective and decision-making processes surrounding pain. Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon involving multiple cerebral mechanisms that differ across studies

    A large ungated TPC with GEM amplification

    Get PDF
    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost . The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are presented in this paper. We further describe the support infrastructure such as gas, cooling and slow control. Finally, we report on the operation of the GEM-TPC in the FOPI experiment, and describe the calibration procedures which are applied to achieve the design performance of the device.Peer reviewe

    The Plastid Genome of Eutreptiella Provides a Window into the Process of Secondary Endosymbiosis of Plastid in Euglenids

    Get PDF
    Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content

    Molecular and Electrophysiological Characterization of GFP-Expressing CA1 Interneurons in GAD65-GFP Mice

    Get PDF
    The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials

    Low bone mass in microscopic colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microscopic colitis presents with similar symptoms to classic inflammatory bowel diseases. Osteoporosis is a common complication of Crohn's disease but there are no data concerning bone metabolism in microscopic colitis.</p> <p>Aims</p> <p>The aim of the present study was to evaluate bone density and metabolism in patients with microscopic colitis.</p> <p>Methods</p> <p>Fourteen patients microscopic colitis were included in the study, and 28 healthy persons and 28 age and gender matched Crohn's disease patients were enrolled as controls. Bone mineral density was measured using dual x-ray absorptiometry at the lumbar spine, femoral neck and the radius. Serum bone formation and bone resorption markers (osteocalcin and beta-crosslaps, respectively) were measured using immunoassays.</p> <p>Results</p> <p>Low bone mass was measured in 57.14% patients with microscopic colitis. Bone mineral density at the femoral neck in patients suffering from microscopic colitis and Crohn's disease was lower than in healthy controls (0.852 ± 0.165 and 0.807 ± 0.136 vs. 1.056 ± 0.126 g/cm<sup>2</sup>; p < 0.01). Bone mineral density at the non-dominant radius was decreased in microscopic colitis patients (0.565 ± 0.093 vs. 0.667 ± 0.072 g/cm<sup>2</sup>; p < 0.05) but unaffected in Crohn's disease patients (0.672 ± 0.056 g/cm<sup>2</sup>). Mean beta-crosslaps concentration was higher in microscopic colitis and Crohn's disease patients than controls (417.714 ± 250.37 and 466.071 ± 249.96 vs. 264.75 ± 138.65 pg/ml; p < 0.05). A negative correlation between beta-crosslaps concentration and the femoral and radius t-scores was evident in microscopic colitis patients.</p> <p>Conclusions</p> <p>Low bone mass is frequent in microscopic colitis, and alterations to bone metabolism are similar to those present in Crohn's disease. Therefore, microscopic colitis-associated osteopenia could be a significant problem in such patients.</p

    Modulated Martensite: Why it forms and why it deforms easily

    Get PDF
    Diffusionless phase transitions are at the core of the multifunctionality of (magnetic) shape memory alloys, ferroelectrics and multiferroics. Giant strain effects under external fields are obtained in low symmetric modulated martensitic phases. We outline the origin of modulated phases, their connection with tetragonal martensite and consequences for their functional properties by analysing the martensitic microstructure of epitaxial Ni-Mn-Ga films from the atomic to macroscale. Geometrical constraints at an austenite-martensite phase boundary act down to the atomic scale. Hence a martensitic microstructure of nanotwinned tetragonal martensite can form. Coarsening of twin variants can reduce twin boundary energy, a process we could follow from the atomic to the millimetre scale. Coarsening is a fractal process, proceeding in discrete steps by doubling twin periodicity. The collective defect energy results in a substantial hysteresis, which allows retaining modulated martensite as a metastable phase at room temperature. In this metastable state elastic energy is released by the formation of a 'twins within twins' microstructure which can be observed from the nanometre to millimetre scale. This hierarchical twinning results in mesoscopic twin boundaries which are diffuse, in contrast to the common atomically sharp twin boundaries of tetragonal martensite. We suggest that observed extraordinarily high mobility of such mesoscopic twin boundaries originates from their diffuse nature which renders pinning by atomistic point defects ineffective.Comment: 34 pages, 8 figure

    Buses, cars, bicycles and walkers the influence of the type of human transport on the flight responses of waterbirds

    Get PDF
    One way to manage disturbance to waterbirds in natural areas where humans require access is to promote the occurrence of stimuli for which birds tolerate closer approaches, and so cause fewer responses. We conducted 730 experimental approaches to 39 species of waterbird, using five stimulus types (single walker, three walkers, bicycle, car and bus) selected to mimic different human management options available for a controlled access, Ramsar-listed wetland. Across species, where differences existed (56% of 25 cases), motor vehicles always evoked shorter flight-initiation distances (FID) than humans on foot. The influence of stimulus type on FID varied across four species for which enough data were available for complete cross-stimulus analysis. All four varied FID in relation to stimuli, differing in 4 to 7 of 10 possible comparisons. Where differences occurred, the effect size was generally modest, suggesting that managing stimulus type (e.g. by requiring people to use vehicles) may have species-specific, modest benefits, at least for the waterbirds we studied. However, different stimulus types have different capacities to reduce the frequency of disturbance (i.e. by carrying more people) and vary in their capacity to travel around important habita
    corecore