106 research outputs found

    Suitability of two root-mining weevils for the biological control of scentless chamomile, Tripleurospermum perforatum, with special regard to potential non-target effects

    Get PDF
    The biology and host range of the two root-mining weevils Diplapion confluensKirby and Coryssomerus capucinus (Beck), two potential agents for the biological control of scentless chamomile Tripleurospermum perforatum (Mérat) Laínz, were studied in the field in southern Germany and eastern Austria, and in a common garden and under laboratory conditions in Delémont, Switzerland from 1993 to 1999. Both weevils were univoltine, and females started to lay eggs in early spring. Diplapion confluens had three and C. capucinus five instars. Larvae of both species were found in the field from mid-April until the end of July; later instars preferentially fed in the vascular cylinder of the shoot base, root crown or root. Although larvae of both species occupy the same temporal and spatial niche within their host plants, they occurred at all investigated field sites together, and showed a similar distribution within sites. No negative or positive interspecific association was detected. Host-specificity tests including no-choice, single-choice, and multiple-choice tests under confined conditions, as well as tests under field conditions with natural and augmented insect densities revealed that both herbivores were specific to plant species in the tribe Anthemideae. However, their development to mature larva or adult on several cultivated plants, as well as on one plant species native to North America, rendered them unsuitable for field release in North America. It was concluded that to investigate non-target effects reliably, host-specificity tests with biological control agents should be carried out under a variety of conditions, particularly with augmented insect densities, as are expected to occur naturally after releas

    Climatic suitability ranking of biological control candidates: a biogeographic approach for ragweed management in Europe

    Get PDF
    Biological control using natural antagonists has been a most successful management tool against alien invasive plants that threaten biodiversity. The selection of candidate agents remains a critical step in a biocontrol program before more elaborate and time-consuming experiments are conducted. Here, we propose a biogeographic approach to identify candidates and combinations of candidates to potentially cover a large range of the invader. We studied Ambrosia artemisiifolia (common ragweed), native to North America (NA) and invasive worldwide, and six NA biocontrol candidates for the introduced Europe (EU) range of ragweed, both under current and future bioclimatic conditions. For the first time, we constructed species distribution models based on worldwide occurrences and important bioclimatic variables simultaneously for a plant invader and its biocontrol candidates in view of selecting candidates that potentially cover a large range of the target invader. Ordination techniques were used to explore climatic constraints of each species and to perform niche overlap tests with ragweed. We show a large overlap in climatic space between candidates and ragweed, but a considerable discrepancy in geographic range overlap between EU (31.4%) and NA (83.3%). This might be due to niche unfilling and expansion of ragweed in EU and the fact that habitats with high ragweed occurrences in EU are rare in NA and predicted to be unsuitable for the candidates. Total geographic range of all candidates combined is expected to decrease under climate change in both ranges, but they will respond differently. The relative geographic coverage of a plant invader by biocontrol candidates at home is largely transferable to the introduced range, even when the invader shifts its niche. Our analyses also identified which combination of candidates is expected to cover the most area and for which abiotic conditions to select in order to develop climatically adapted strains for particular regions, where ragweed is currently unlikely to be controlled

    Areas of high conservation value at risk by plant invaders in Georgia under climate change.

    Get PDF
    Invasive alien plants (IAP) are a threat to biodiversity worldwide. Understanding and anticipating invasions allow for more efficient management. In this regard, predicting potential invasion risks by IAPs is essential to support conservation planning into areas of high conservation value (AHCV) such as sites exhibiting exceptional botanical richness, assemblage of rare, and threatened and/or endemic plant species. Here, we identified AHCV in Georgia, a country showing high plant richness, and assessed the susceptibility of these areas to colonization by IAPs under present and future climatic conditions. We used actual protected areas and areas of high plant endemism (identified using occurrences of 114 Georgian endemic plant species) as proxies for AHCV. Then, we assessed present and future potential distribution of 27 IAPs using species distribution models under four climate change scenarios and stacked single-species potential distribution into a consensus map representing IAPs richness. We evaluated present and future invasion risks in AHCV using IAPs richness as a metric of susceptibility. We show that the actual protected areas cover only 9.4% of the areas of high plant endemism in Georgia. IAPs are presently located at lower elevations around the large urban centers and in western Georgia. We predict a shift of IAPs toward eastern Georgia and higher altitudes and an increased susceptibility of AHCV to IAPs under future climate change. Our study provides a good baseline for decision makers and stakeholders on where and how resources should be invested in the most efficient way to protect Georgia's high plant richness from IAPs

    Phenology and temperature‐dependent development of Ceutorhynchus assimilis, a potential biological control agent for Lepidium draba

    Get PDF
    Lepidium draba (Brassicaceae) is a major concern for agriculture and biodiversity in the western United States. As current control methods do not provide long-term, sustainable solutions, research has been conducted to find biological control agents. Ceutorhynchus assimilis is one of the currently investigated candidates. Known as oligophagous in the literature, a specialist clade of this root-galling weevil exists in southern Europe. This raised the question of its ability to survive in colder climates in the target range. We investigated the phenology of C. assimilis in the field in southern France (specialist clade) and Romania (generalist clade) and measured various temperature-dependent parameters in the laboratory. In both ranges, weevils were univoltine. Oviposition in autumn started later in France compared to Romania, while mature larvae exited galls (to pupate in the soil) earlier the following year. On average, 25% and 32% of galls from France and Romania were completely below the soil surface, respectively, and this appeared to depend on soil substrate. Weevils transported from France to Romania were able to develop, but at a much lower rate than Romanian weevils. Mortality of overwintering larvae of both clades increased with decreasing temperature and exposure time. At −5°C, lethal times Lt50 and Lt95 were 15 and 42 days for the specialist clade and 26 and 72 days for the generalist clade. A higher proportion of third instar larvae compared to first and second instar larvae survived. Pupation time at different temperatures did not differ between weevils from France or Romania. A climate match model (comparing winter temperatures) indicated that the specialist clade of C. assimilis from France has the potential to establish in some parts of the target range (e.g. Washington, Oregon, California). However, temperature extremes and winters without snow cover will likely limit its establishment unless rapid adaptive evolution takes place

    Predicting Abundances of Invasive Ragweed Across Europe Using a “Top-down” Approach

    Get PDF
    Common ragweed (Ambrosia artemisiifolia L.) is a widely distributed and harmful invasive plant that is an important source of highly allergenic pollen grains and prominent crop weed. As a result, ragweed causes huge costs to both human health and agriculture in affected areas. Efficient mitigation requires accurate mapping of ragweed densities that, until now, has not been achieved accurately for the whole of Europe. Here we provide two inventories of common ragweed abundances with grid resolutions of 1 km and 10 km. These “top-down” inventories integrate pollen data from 349 stations in Europe with habitat and landscape management information, derived from land cover data and expert knowledge. This allows us to cover areas where surface observations are missing. Model results were validated using “bottom–up” data of common ragweed in Austria and Serbia. Results show high agreement between the two analytical methods. The inventory shows that areas with the lowest ragweed abundances are found in Northern and Southern European countries and the highest abundances are in parts of Russia, parts of Ukraine and the Pannonian Plain. Smaller hotspots are found in Northern Italy, the Rhône Valley in France and in Turkey. The top-down approach is based on a new approach that allows for cross continental studies and is applicable to other anemophilous species. Due to its simplicity, it can be used to investigate such species that are difficult and costly to identify at larger scales using traditional vegetation surveys or remote sensing. The final inventory is open source and available as a georeferenced tif file, allowing for multiple usages, reducing costs for health services and agriculture through well-targeted management interventions

    Biological weed control to relieve millions from ambrosia allergies in Europe

    Get PDF
    Invasive alien species (IAS) can substantially affect ecosystem services and human well-being. However, quantitative assessments of their impact on human health are rare, and the benefits of implementing sustainable IAS management likely to be underestimated. Here we report the effects of the allergenic plant Ambrosia artemisiifolia on public health in Europe and the potential impact of the accidentally introduced leaf beetle Ophraella communa on the number of patients and healthcare costs. We find that, prior to the establishment of O. communa, some 13.5 million persons suffered from Ambrosia-induced allergies in Europe, causing costs of Euro 7.4 billion annually. Our projections reveal that biological control of A. artemisiifolia will reduce the number of patients by approximately 2.3 million and the health costs by Euro 1.1 billion per year. Our conservative calculations indicate that the currently discussed economic costs of IAS underestimate the real costs and thus also the benefits from biological control

    A review of the phytochemical support for the shifting defence hypothesis

    Get PDF
    Several theories have been developed to explain why invasive species are very successful and develop into pest species in their new area. The shifting defence hypothesis (SDH) argues that invasive plant species quickly evolve towards new defence levels in the invaded area because they lack their specialist herbivores but are still under attack by local (new) generalist herbivores. The SDH predicts that plants should increase their cheap, toxic defence compounds and lower their expensive digestibility reducing compounds. As a net result resources are saved that can be allocated to growth and reproduction giving these plants a competitive edge over the local plant species. We conducted a literature study to test whether toxic defence compounds in general are increased in the invaded area and if digestibility reducing compounds are lowered. We specifically studied the levels of pyrrolizidine alkaloids, a toxin which is known for its beneficial and detrimental impact against specialists and generalists, respectively. Digestibility reducers did not show a clear trend which might be due to the small number of studies and traits measured. The meta analysis showed that toxic compounds in general and pyrrolizidine alkaloid levels specifically, increased significantly in the invaded area, supporting the predictions of the SDH that a fast evolution takes place in the allocation towards defence
    corecore