3,340 research outputs found

    Capturing of a Magnetic Skyrmion with a Hole

    Full text link
    Magnetic whirls in chiral magnets, so-called skyrmions, can be manipulated by ultrasmall current densities. Here we study both analytically and numerically the interactions of a single skyrmion in two dimensions with a small hole in the magnetic layer. Results from micromagnetic simulations are in good agreement with effective equations of motion obtained from a generalization of the Thiele approach. Skyrmion-defect interactions are described by an effective potential with both repulsive and attractive components. For small current densities a previously pinned skyrmion stays pinned whereas an unpinned skyrmion moves around the impurities and never gets captured. For higher current densities, j_c1 < j < j_c2, however, single holes are able to capture moving skyrmions. The maximal cross section is proportional to the skyrmion radius and to Sqrt(alpha), where alpha is the Gilbert damping. For j > j_c2 all skyrmions are depinned. Small changes of the magnetic field strongly change the pinning properties, one can even reach a regime without pinning, j_c2=0. We also show that a small density of holes can effectively accelerate the motion of the skyrmion and introduce a Hall effect for the skyrmion.Comment: 11 page

    Edge instabilities and skyrmion creation in magnetic layers

    Full text link
    We study both analytically and numerically the edge of two-dimensional ferromagnets with Dzyaloshinskii-Moriya (DM) interactions, considering both chiral magnets and magnets with interface-induced DM interactions. We show that in the field-polarized ferromagnetic phase magnon states exist which are bound to the edge, and we calculate their spectra within a continuum field theory. Upon lowering an external magnetic field, these bound magnons condense at a finite momentum and the edge becomes locally unstable. Micromagnetic simulations demonstrate that this edge instability triggers the creation of a helical phase which penetrates the field-polarized state within the bulk. A subsequent increase of the magnetic field allows to create skyrmions close to the edge in a controlled manner.Comment: 10 pages, 8 figures; (v2) minor corrections, published versio

    Hydrodynamic long-time tails after a quantum quench

    Full text link
    After a quantum quench, a sudden change of parameters, generic many particle quantum systems are expected to equilibrate. A few collisions of quasiparticles are usually sufficient to establish approximately local equilibrium. Reaching global equilibrium is, however, much more difficult as conserved quantities have to be transported for long distances to build up a pattern of fluctuations characteristic for equilibrium. Here we investigate the quantum quench of the one-dimensional bosonic Hubbard model from infinite to finite interaction strength U using semiclassical methods for weak, and exact diagonalization for strong quenches. Equilibrium is approached only slowly, as t^{-1/2} with subleading corrections proportional to t^{-3/4}, consistent with predictions from hydrodynamics. We show that these long-time tails determine the relaxation of a wide range of physical observables.Comment: 5 pages + 4 pages Supplementary Materia

    Magnetic skyrmions and skyrmion clusters in the helical phase of Cu2_2OSeO3_3

    Full text link
    Skyrmions are nanometric spin whirls that can be stabilized in magnets lacking inversion symmetry. The properties of isolated skyrmions embedded in a ferromagnetic background have been intensively studied. We show that single skyrmions and clusters of skyrmions can also form in the helical phase and investigate theoretically their energetics and dynamics. The helical background provides natural one-dimensional channels along which a skyrmion can move rapidly. In contrast to skyrmions in ferromagnets, the skymion-skyrmion interaction has a strong attractive component and thus skyrmions tend to form clusters with characteristic shapes. These clusters are directly observed in transmission electron microscopy measurements in thin films of Cu2_2OSeO3_3. Topological quantization, high mobility and the confinement of skyrmions in channels provided by the helical background may be useful for future spintronics devices.Comment: 5 pages, 3 figures, 4 pages supplemen

    Control of Energy Transfer Between Pyrene‐ and Perylene‐Nucleosides by the Sequence of DNA‐Templated Supramolecular Assemblies

    Get PDF
    DNA was used as supramolecular scaffold to order chromophores and control their optical properties. Ethynylpyrene as energy donor was attached to 2′‐desoxy‐2‐aminoadenosine that binds selectively to thymidines (T) in the template. Ethynylperylene as acceptor was attached to 2′‐desoxyuridine that is complementary to 2′‐desoxyadenosine (A). This donor‐acceptor pair was assembled along single‐stranded DNA templates of different A−T sequences to investigate the sequence control of the energy transfer between the chromophores. The fluorescence intensities increase in the mixed assemblies along the DNA templates from A10T10 over (AATT)5 to (AT)10, although these templates provide equal numbers of potential binding sites for the two different nucleoside chromophore conjugates and exhibit similar absorbances. This shows that the sequence selective assembly of the two building blocks along DNA templates is programmable and alters the fluorescence readout. Such sequence‐controlled supramolecular chemistry represents the key element for future functional π‐systems in materials for light harvesting of solar energy

    Test of the isotropy of the speed of light using a continuously rotating optical resonator

    Full text link
    We report on a test of Lorentz invariance performed by comparing the resonance frequencies of one stationary optical resonator and one continuously rotating on a precision air bearing turntable. Special attention is paid to the control of rotation induced systematic effects. Within the photon sector of the Standard Model Extension, we obtain improved limits on combinations of 8 parameters at a level of a few parts in 101610^{-16}. For the previously least well known parameter we find κ~eZZ=(1.9±5.2)×1015\tilde \kappa_{e-}^{ZZ} =(-1.9 \pm 5.2)\times 10^{-15}. Within the Robertson-Mansouri-Sexl test theory, our measurement restricts the isotropy violation parameter βδ12\beta -\delta -\frac 12 to (2.1±1.9)×1010(-2.1\pm 1.9)\times 10^{-10}, corresponding to an eightfold improvement with respect to previous non-rotating measurements.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Indigo in the nanochannels of zeolite L : towards a new type of colorant

    Get PDF
    A host-guest based colorant was synthesized by intercalating indigo molecules into the nanochannels of zeolite L (ZL). Reductive washing thereby ensured the efficient and selective removal of non-intercalated indigo molecules. The UV-vis diffuse reflectance spectrum of the product after intercalation and reductive washing (designated as indigo-ZL) was found to resemble the solution spectrum of indigo, leading to the conclusion that the formation of indigo aggregates is prevented due to the steric constraints imposed by the microporous structure of ZL. The application of indigo-ZL on cotton was tested by roll coating. The light absorption properties of the resulting textile prints showed no significant alteration when compared to the pure indigo-ZL powder. The UV-vis diffuse reflectance spectra of mixtures consisting of indigo-ZL and a further ZL-based colorant were successfully predicted by the weighted addition of the respective primary spectra

    Discrimination between S²⁻ and SO²⁻ Sites in Mixed Crystal Compounds Containing Co and Co/Mo Clusters by ⁵⁹Co-NMR Spectroscopy, and the Relevance for HDS Catalysis

    Get PDF
    In aqueous solutions of the mixed crystal compounds with formal composition K8[Co4-xMoxS4-y(SO)y(CN)12·nH2O (x = 0–2; y = 0–2) i) there are distinct CoS, Co(SO), and Co(SO)2 sites and ii) no hetero-metal clusters are present. These results, revealed by 59Co–NMR, could principally not be disclosed by single crystal X-ray structure analysis. The NMR data also suggest a stable dinuclear cobalt-sulphur cluster in solution. The relevance for HDS catalysis is discussed
    corecore