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Abstract 

A host-guest based colorant was synthesized by intercalating indigo molecules into the nanochannels 

of zeolite L (ZL). Reductive washing thereby ensured the efficient and selective removal of non-

intercalated indigo molecules. The UV-vis diffuse reflectance spectrum of the product after 

intercalation and reductive washing (designated as indigo-ZL) was found to resemble the solution 

spectrum of indigo, leading to the conclusion that the formation of indigo aggregates is prevented 

due to the steric constraints imposed by the microporous structure of ZL. The application of indigo-ZL 

on cotton was tested by roll coating. The light absorption properties of the resulting textile prints 

showed no significant alteration when compared to the pure indigo-ZL powder. The UV-vis diffuse 

reflectance spectra of mixtures consisting of indigo-ZL and a further ZL-based colorant were 

successfully predicted by the weighted addition of the respective primary spectra. 
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1. Introduction 

Indigo is considered as one of the historically and industrially most relevant colorants [1]. Apart from 

its widespread use as a blue dyestuff for textiles, indigo is known as the chromophore of the pre-

Columbian pigment Maya Blue [2]. This remarkably stable blue pigment [3] is prepared by 

incorporating indigo into the pores of the inorganic clay palygorskite. Recent studies have attributed 

the peculiar hue of Maya Blue pigments to the presence of the oxidized form of indigo 

(dehydroindigo) [4-6]. 

The general concept of increasing the stability of an organic molecule by incorporating it into a robust 

inorganic porous host has been applied to a variety of host-guest combinations. In order to obtain a 

host-guest material in the strict sense of the word, it is necessary to ensure that the guest species are 

exclusively present in the host and not on its external surface. Materials fulfilling this requirement are 

expected to feature well-defined properties, as the guest species are only interacting with the host 

material, particularly in cases of strong spatial confinement, where even guest-guest interactions can 

be excluded [7]. Removal of guest species from the external surface of the host – a step that is absent 

in the synthesis of Maya Blue – is therefore essential regarding the properties of a host-guest 

material. 

In terms of providing host-guest materials with well-defined properties, the use of zeolites as hosts 

has led to promising results [7]. Zeolites are crystalline aluminosilicates and are based on a network 

of corner-sharing [SiO4] and [AlO4] tetrahedra. Following this classical definition, the general chemical 

formula of a zeolite is represented by Mx/n[(AlO2)x(SiO2)y]·wH2O, where M is a charge-compensating 

cation of valence n. According to Löwenstein’s rule [8], an aluminosilicate cannot contain more [AlO4] 

than [SiO4] tetrahedra. A large variety of zeolite frameworks exist, ranging from non-intersecting one-

dimensional channels to three-dimensionally interconnected cavities [9]. The pore diameter of 
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zeolites is in the micropore range (below 2 nm). Most zeolites are hydrophilic, except for those with a 

low content of aluminum. In the context of colorants and fluorescent materials, zeolite L (ZL) has 

proven to be an excellent host material for organic chromophores and fluorophores [7]. The 

composition of a unit cell of ZL is given by M9/n[(AlO2)9(SiO2)27]·wH2O. In most cases, M is a 

monovalent cation (typically Na+ or K+). The amount of H2O in a fully hydrated ZL corresponds to w = 

21 [10]. The framework of ZL consists of a hexagonal arrangement of one-dimensional channels with 

a free diameter of 0.71 nm at the narrowest and 1.26 nm at the widest section (Figure 1). The center-

to-center distance between adjacent channels is 1.84 nm. Crystals of ZL often feature a hexagonal 

prismatic or approximate cylindrical shape with the channel entrances located on the opposing base 

surfaces. The size of the crystals can be tuned within a range of 30 nm to several µm [11]. ZL crystals 

can furthermore be synthesized with various aspect ratios, including disc, barrel, and rod type 

morphologies [11,12]. For the work reported herein, we have used commercially available ZL crystals 

with an average diameter of 0.4 µm (Figure 1). One such ZL crystal contains approximately 43,000 

nanochannels. 

Hydroxyl groups on the external surface of the ZL crystals allow for modification by means of 

functional trialkoxysilanes. A hydrophobic external crystal surface can, for example, be established by 

reaction with methoxy(dimethyl)octylsilane [13]. External surface functionalization can be employed 

to optimize the dispersibility in a given medium. This implies that the interaction of a ZL-based host-

guest material with its surrounding medium can be tuned independently from the guest species. 
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Figure 1. Top left: Framework of ZL viewed along the c-axis (channel axis). Bottom left: Illustration of 

the main channel dimensions (in units of nm), compared to the dimensions of the indigo molecule. 

Right: SEM images of ZL crystals used in this work. 

 

Cationic molecules can be introduced into the channels of ZL from an aqueous solution by means of 

ion exchange [14]. Loading with neutral molecules is typically conducted by first impregnating the ZL 

crystals so that the molecule to be introduced into the channels is distributed over the external ZL 

crystal surface. After drying, the impregnated ZL crystals are heated in a vacuum or under nitrogen to 

allow for the molecules to diffuse into the channels. Molecules remaining on the external crystal 

surface are removed by washing with a suitable solvent [15]. Previous work on ZL-based host-guest 

composites has mainly relied on soluble dyes as guest species. Removing molecules left on the 

external ZL surface has thus been generally unproblematic, particularly if the ZL channels are sealed 

before washing to prevent leaching of the intercalated dye molecules [16,17]. The intercalation of 

pigments into ZL is more challenging. Pigments are, by definition, insoluble in common solvents. 

Alternative ways of removing molecules from the external ZL surface must therefore be developed. 
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The host-guest combination of ZL and indigo allows for a new concept of preparing inorganic-organic 

host-guest materials with well-defined properties. Intercalation and reductive washing leads to an 

insoluble colorant that – despite of its particulate nature – features the well-defined UV-vis 

absorption of dissolved indigo molecules. 

 

2. Materials and Methods 

2.1. Definition of loading levels 

The target loading level pn of a guest molecule in ZL is defined as the average number of guest 

molecules per unit cell of ZL. To calculate the required amount of indigo for a certain value of pn, a 

molar mass of a ZL unit cell of MZL = 2883 g mol–1 was used, corresponding to ZL in its fully hydrated 

and potassium exchanged state [10]. The actual loading level pn* is obtained by subtracting the indigo 

molecules removed upon reductive washing and thus yields the fraction of occupied unit cells 

according to eq (1). 

𝑝n
∗ =

number of occupied unit cells

total number of unit cells
 (1) 

The mass fraction of indigo (wi) in an indigo-ZL sample can then be calculated according to eq (2) (Mi 

= 262.3 g mol–1). 

𝑤i =
𝑝n

∗ ∙𝑀i

𝑝n
∗ ∙𝑀i+𝑀ZL

 (2) 

A loading of pn* = 0.5 therefore corresponds to an indigo content of 4.4 wt%. 
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2.2. Synthesis of indigo-ZL 

ZL (400 g) (HSZ-500, Tosoh Corporation) was dispersed in dry ethyl acetate (1 L). An amount of indigo 

(Sigma-Aldrich, 95 %) corresponding to the target loading was added to this suspension and the 

mixture was sonicated for 20 min. The solvent was subsequently removed by rotary evaporation. The 

resulting indigo-impregnated ZL sample, designated as indigo@ZL, was heated under reduced 

pressure (ca. 12 mbar) to 160 °C. After reaching 160 °C, the vacuum was switched to a nitrogen 

atmosphere and the temperature was kept for 25 h, leading to the intercalation of the indigo 

molecules, i.e., to the introduction of the indigo molecules into the ZL nanochannels. During this 

process, the powder was stirred. 

To remove residual indigo molecules from the external ZL surface, the indigo-ZL product (70 g 

portions) was dispersed in an aqueous solution (350 mL) of NaOH (1 M) and Na2S2O4 (0.05 M). After 

5 min under quiescent conditions, the suspension was briefly stirred and then centrifuged (10 min, 

9000 rpm). The yellow supernatant was decanted off and the washing process was repeated until the 

supernatant was colorless (typically 5 times). The washed blue colored sample, designated as indigo-

ZL, was dispersed in deionized water (300 mL), centrifuged, and dried under reduced pressure at 

room temperature. Non-intercalated indigo was recovered by combining the washing solutions 

containing the yellow leuco-indigo and extracting with cold ethyl acetate, leading to a colorless 

aqueous phase and a dark blue organic phase. 
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2.3. Synthesis of BY40-ZL 

BY40-ZL can be prepared by a simple ion exchange as previously shown for a variety of cationic 

dyes [7]. Briefly, BY40 (235 mg) (Basic Yellow 40, CHT Switzerland) was dissolved in water (50 mL) and 

ZL (10 g) was added. The resulting suspension was stirred at room temperature for 15 h. The product 

was recovered by centrifugation, washed with four 20 mL portions of 1-butanol, and dried in a 

vacuum oven at 80 °C. 

 

2.4. Channel sealing 

To provide maximum stability against leaching and chemical attack, the channels of ZL can be sealed 

after intercalation and washing [17]. For this purpose, indigo-ZL (100 g) was dispersed in ethyl acetate 

(400 mL). While stirring, 3-aminopropyltriethoxysilane (12.5 mL) (APTES, Sigma-Aldrich, ≥ 98 %) was 

added. After stirring for 2 h at room temperature, the suspension was heated to 80 °C and stirred at 

this temperature for 16 h. The product was recovered by centrifugation (10 min, 9000 rpm), washed 

with ethyl acetate (7 times 500 mL), and dried under reduced pressure at room temperature. 

 

2.5. Application by roll coating 

Indigo-ZL and indigo were applied to standard bleached cotton fabric using a commercial printing 

paste (Printperfekt 226, CHT). In a typical procedure, sealed indigo-ZL (0.5 g) was dispersed in 

deionized water (8 mL) for at least 5 min with an Ultra Turrax mixer (IKA). This dispersion was 

subsequently mixed with printing paste (50 g, mixing with a turbine agitator for at least 5 min). A 

conventional hand roll coater was used to apply the resulting mixture on cotton. The printed cotton 

was dried at 80 °C for 10 min and cured at 150 °C for 4 min. When using pure indigo instead of indigo-
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ZL, the amount of colorant in the mixture was adjusted to provide a comparable number of indigo 

molecules per mass of printing paste. The same procedure was used for applying BY40-ZL (and 

mixtures of indigo-ZL and BY40-ZL). 

 

2.6. Physical measurements 

UV-vis diffuse reflectance spectra were obtained with a PerkinElmer Lambda 650 spectrometer 

equipped with an integrating sphere (150 mm diameter, with gloss trap). Prior to the measurements, 

the powder samples were ground in a mortar and pressed to a tablet. Argon sorption isotherms were 

measured at 87.3 K with a Quantachrome Autosorb iQ MP equipped with a CryoCooler. Total pore 

volumes Vtot were derived from the amount of adsorbed argon at a relative pressure of p/p0 = 0.95. 

Samples were dried under vacuum at 120 °C for at least 3 h prior to the sorption measurement. 

Scanning electron microscopy (SEM) images were collected after gold sputtering with a FEI Quanta 

FEG 250. 

 

3. Results and Discussion 

3.1. Reductive washing 

In order to obtain a host-guest material with well-defined and reproducible properties, it is essential 

to ensure that the amount of guest species adsorbed on the external host surface is minimized. For ZL 

composites employing soluble dyes as guests, this has been achieved by washing with an appropriate 

solvent. However, such washing processes pose a challenge due to potential leaching of the 

intercalated molecules [15]. 
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Indigo is insoluble in water, alcohol, and ether, with slight solubility in ethyl acetate, 

dichloromethane, and DMSO. Removal of externally adsorbed indigo molecules by conventional 

washing therefore becomes impracticable. The reduction of indigo yields the water soluble leuco-

indigo (Figure 2). Selective reduction of indigo molecules on the external ZL surface was achieved by 

using dithionite as a reducing agent. The selectivity of this washing process for the external surface is 

based on the inability of anions to enter the channels of ZL. The negatively charged ZL framework 

thus protects the intercalated indigo molecules from attack by the dithionite anion. Figure 2 

illustrates the selectivity of the reductive washing by comparing samples before and after 

intercalation. In the former case, complete reduction of indigo to leuco-indigo occurred, leaving the 

ZL in its intrinsic colorless form. 

 

 

Figure 2. Indigo molecules on the external ZL surface are removed by reductive washing, i.e., by 

reducing indigo to the water-soluble leuco-indigo (reaction scheme). The photographic image on the 

left illustrates the outcome of such a reductive washing step when applied to a sample before (test 

tube A) and after intercalation (test tube B). The image on the right shows a washed and dried indigo-

ZL sample. 
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3.2. Determination of loading levels 

The actual loading level of an indigo-ZL sample can be determined by quantification of the indigo in 

the washing solutions. After extraction and oxidation (in air), the organic phase was analyzed to 

determine the concentration of indigo. Figure 3 shows the actual loading level after various 

intercalation times. Note that at lower temperature, longer intercalation times are required to reach 

comparable loading levels. After 24 h at 160 °C, no further significant increase of the loading level 

could be achieved, indicating that an equilibrium between indigo molecules located on the external 

ZL surface and indigo molecules located in the ZL nanochannels is reached. In such cases, less than 

6 % of the initial amount of indigo was washed off and intercalation was considered to be complete. 

The actual loading level in this case was pn* = 0.144, resulting in an indigo content of 1.3 wt%. For a ZL 

crystal with a diameter and length of 0.4 µm, this corresponds to 77 indigo molecules per channel or 

3.3 million indigo molecules per ZL crystal. 

 

 

Figure 3. Actual loading levels pn* as a function of the intercalation time at 120 °C (open circles) and 

160 °C (solid circles). In both cases the amount of indigo in the starting mixture corresponded to a 

target loading of pn = 0.15. The first data point was taken after 30 min.  
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3.3. Indigo in the ZL nanochannels 

The dimensions of the planar indigo molecule are 0.48 × 1.2 nm2 [5]. Regarding the orientation of the 

indigo molecules in the ZL channels, two extreme cases are shown in Figure 1. The diameter of the 

smallest windows in a ZL channel is 0.71 nm. It is thus reasonable to assume that an indigo molecule 

roughly aligns its long axis with the ZL c-axis (or channel axis) when entering and diffusing through the 

channels. However, this alignment does not necessarily correspond to the ideal orientation of the 

molecules in the ZL channels. The long axis of the indigo molecule is slightly shorter than the diameter 

of the widest channel sections. A situation as shown in Figure 1 with the long axis of indigo 

perpendicular to the c-axis would be possible as well. Due to the very tight fit and the unfavorable 

host-guest interactions resulting from such an orientation (see below), we consider this particular 

case unlikely. 

The orientation of fluorescent molecules in the channels of ZL has been determined by polarized 

fluorescence microscopy and was found to strongly depend on the size of the respective molecules 

[7]. Long-stretched molecules such as perylene diimide (PDI) derivatives typically align with their long 

axis parallel to the c-axis [17,18]. The extreme case of perpendicular orientation was observed for N-

methylacridine, which is 0.15 nm shorter than indigo [19,20]. Due to the very low fluorescence 

quantum yield of indigo (ΦF = 0.002, in solution [21]), it is not possible to reliably determine the 

orientation of the molecules by means of polarized fluorescence microscopy. Taking into account 

previous work on differently sized fluorescent dye molecules in ZL [7], it is reasonable to assume that 

neither of the two cases shown in Figure 1 is an accurate representation of the orientation of indigo 

molecules in ZL. This becomes evident when considering the possible host-guest interactions. 

Carbonyl groups are known to favorably interact with the ZL framework [22,23]. The indigo molecules 

will therefore adopt an orientation which maximizes these interactions. This will most likely result in a 
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tilt of the molecule’s long axis with respect to the c-axis. Note that in terms of the interaction 

between framework and carbonyl groups, the case of perpendicular orientation is unfavorable. 

The choice of a host material with a one-dimensional channel system bears several advantages. 

Compared to a material with a three-dimensional pore system, where every pore entrance provides 

access to the entire pore volume, materials with one-dimensional channel systems can be sealed 

more effectively [16,17,24]. Not only does this reduce leaching of the guests, but it also limits the 

diffusion of potentially reactive species into the channels. 

The presence of indigo molecules in the ZL channels leads to a significant reduction of the accessible 

pore volume. Figure 4 shows the argon adsorption isotherms of ZL and indigo-ZL (pn* = 0.48). As 

expected, ZL displays a type I(a) isotherm, which is generally observed in the case of microporous 

materials having mainly narrow micropores (< 1 nm) [25]. The argon adsorption capacity is 

substantially reduced after the intercalation of indigo and reductive washing. A total pore volume of 

0.154 cm3 g–1 was obtained for the pure ZL sample, whereas indigo-ZL (pn* = 0.48) showed a total 

pore volume of only 0.037 cm3 g–1. This is indicative of the strong spatial confinement in indigo-ZL, 

which – in combination with the one-dimensionality of the ZL channel system – limits diffusion and 

thus protects the intercalated indigo molecules from chemical attack. Sealing of indigo-ZL with APTES 

led to a further reduction of the total pore volume (Vtot = 0.029 cm3 g–1).  
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Figure 4. Argon adsorption isotherms of ZL (open circles) and indigo-ZL (pn* = 0.48, before sealing 

with APTES, solid circles). 

 

3.4. UV-vis spectroscopy of indigo-ZL 

Figure 5 (panel A) compares the UV-vis diffuse reflectance spectra of a mechanical mixture of indigo 

and ZL with the spectra of indigo@ZL (impregnated) and indigo-ZL (after intercalation and washing). 

The spectrum of the mechanical mixture features the well-established spectrum of solid indigo, which 

has a broad maximum around 650 nm [4]. A new band with a maximum at 620 nm appears after 

impregnation, indicating partial intercalation of the indigo molecules. A narrow absorption band with 

a maximum at 615 nm is ultimately obtained after intercalation and washing. Although slightly 

broader, this spectrum is very similar to the solution spectrum of indigo in DMSO (Figure 5, panel B). 

The bathochromic shift of the absorption maximum of solid indigo with respect to indigo in organic 

solvents has been attributed to hydrogen bonding between the indigo molecules in the solid state 

[26,27]. We can thus conclude that the indigo molecules in the channels of ZL are predominantly 

present in the form of monomers. The spectrum of indigo-ZL differs significantly from spectra of 
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classical Maya Blue pigments. The latter are generally much broader due to variable contributions 

from indigo aggregates, indigo monomers, and dehydroindigo [4]. 

 

 

Figure 5. Normalized diffuse reflectance spectra of a mechanical mixture of indigo and ZL (panel A, 

red), indigo@ZL (panel A, black dots), and washed indigo-ZL (panel A, blue). The diffuse reflectance 

spectrum of washed indigo-ZL (blue) is compared to the solution spectrum of indigo in DMSO (green 

dots) in panel B. The actual loading level of the washed indigo-ZL sample is pn* = 0.48. 

 

To exemplify that the narrow absorption band of indigo-ZL is independent of the application medium, 

we have prepared indigo-ZL prints on cotton by means of a commercial printing paste. Figure 6 shows 

that the diffuse reflectance spectra of the resulting prints remain comparable to the solution 

spectrum of indigo. Apart from a slight broadening at high loading levels, presumably indicative of 

minor intermolecular interactions in the ZL channels due to the shorter distances between the indigo 

molecules, the shape of the indigo-ZL absorption band is largely independent of the loading level 

(Figure 6, panel A). It should be mentioned at this point that a comparison between the color 

characteristics of indigo-ZL and Maya Blue is not straightforward. The hue of Maya Blue is affected by 

the indigo/dehydroindigo ratio, which in turn is determined by the thermal treatment during the 
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preparation of the pigment [2,4]. In the case of indigo-ZL, intercalation under an inert atmosphere 

(excluding aerobic oxidation of indigo) and reductive washing ensure a product with a well-defined 

hue. 

 

 

Figure 6. Normalized diffuse reflectance spectra of indigo-ZL textile prints with loading levels of 0.5 

(panel A, orange), 0.25 (panel A, black), and 0.15 (panel A, blue). Panel B compares the indigo-ZL 

textile print (blue, pn = 0.15) to a textile print prepared with pure indigo (red). The solution spectrum 

of indigo in DMSO (green dots) is shown for comparison. 

 

Regarding the use of ZL-based host-guest materials as colorants, it should be noted that the refractive 

index of ZL is 1.49 [28] and thus similar to the refractive index of common organic polymers (or 

conventional organic pigments). The application of ZL-based colorants in such polymer matrices (e.g. 

for coatings) typically leads to low opacity [29]. 
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3.5. Mixing behavior 

The chemical and physical properties of a pigment, such as surface functional groups, particle size and 

shape, as well as crystal modifications must be taken into account when considering potential 

applications [30]. When using porous materials to host the chromophores, the essential chemical and 

physical properties of the pigment – apart from light absorption – are determined by the porous 

material, and are therefore independent of the color. It follows that once a process has been found to 

apply a certain ZL-based colorant in a specific medium, all other ZL-based colorants can be applied by 

the same process. Furthermore, we can expect an ideal mixing behavior, implying that the diffuse 

reflectance spectrum of a mixture of ZL-based colorants should be predictable by the weighted 

addition of the respective primary spectra. To test this hypothesis we have investigated mixtures of 

indigo-ZL and BY40-ZL. As expected, dispersion of the bright yellow BY40-ZL in the printing paste was 

successfully achieved by the procedure used for indigo-ZL. Figure 7 shows the experimental diffuse 

reflectance spectrum of a textile print obtained with an indigo-ZL/BY40-ZL mixture. The spectrum is in 

good agreement with the spectrum calculated by the weighted addition of the indigo-ZL and BY40-ZL 

primary spectra. 

  



Woodtli et al. 18 / 21 

 

Figure 7. Diffuse reflectance spectra and photographic images of textile prints prepared with indigo-

ZL (blue line, image a), BY40-ZL (orange line, image b), and an indigo-ZL/BY40-ZL mixture (green line, 

image c). The spectrum obtained by adding the indigo-ZL and BY40-ZL spectra is shown in black. 

 

4. Conclusions 

Pigments are defined as colorants that are insoluble in the application medium, implying that they 

retain a particulate (or crystal) structure throughout the coloration process [30]. According to this 

definition, indigo-ZL can be considered as a pigment, although its light absorption properties are 

comparable to dissolved indigo monomers. By preventing the formation of indigo aggregates, the 

absorption spectrum of indigo-ZL in a matrix or on a substrate is highly predictable, i.e., it will in any 

case resemble the indigo solution spectrum. 

The reproducibility of the UV-vis diffuse reflectance spectra in different application media requires 

the indigo molecules to be shielded. It is therefore essential to remove indigo molecules that are 

adsorbed on the external ZL surface. The method of reductive washing ensures a high selectivity for 

indigo molecules on the external ZL surface and enables recycling of the non-intercalated indigo 

molecules. 
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The hue of conventional organic pigments depends not only on the light absorption properties of the 

chromophores, but is to a large extent determined by the particle size and crystallinity [27]. The host-

guest principle applied for the synthesis of indigo-ZL opens possibilities for adjusting the particle size 

of a pigment without significantly affecting its light absorption properties. Furthermore, by using 

different chromophores, a range of pigments can be prepared that are identical in terms of particle 

size, particle morphology, dispersibility, and surface chemistry. 
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