29 research outputs found

    Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Get PDF
    Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase

    CODH-IV: A High-Efficiency CO-Scavenging CO Dehydrogenase with Resistance to O 2

    No full text
    International audienceCO dehydrogenases (CODHs) catalyse the reversible conversion between CO and CO2. Genomic analysis indicated that the metabolic functions of CODHs vary. The genome of Carboxydothermus hydrogenoformans encodes five CODHs (CODH‐I–V), of which CODH‐IV is found in a gene cluster near a peroxide‐reducing enzyme. Our kinetic and crystallographic experiments reveal that CODH‐IV differs from other CODHs in several characteristic properties: it has a very high affinity for CO, oxidizes CO at diffusion‐limited rate over a wide range of temperatures, and is more tolerant to oxygen than CODH‐II. Thus, our observations support the idea that CODH‐IV is a CO scavenger in defence against oxidative stress and highlight that CODHs are more diverse in terms of reactivity than expected
    corecore