97 research outputs found

    A high-resolution diatom-based Middle and Late Holocene environmental history of the Little Belt region, Baltic Sea

    Get PDF
    The large‐scale shifts in the salinity of the Baltic Sea over the Holocene are well understood and have been comprehensively documented using sedimentary proxy records. More recent work has focused on understanding how past salinity fluctuations have affected other ecological parameters (e.g. primary productivity, nutrient content) of the Baltic basin, and salinity changes over key events and over short time scales are still not well understood. The International Ocean Drilling Program Expedition 347 cored the Baltic basin in order to collect basin‐wide environmental records through a glacial–interglacial cycle. Site M0059 is located in the Little Belt between the Baltic Sea and the Atlantic Ocean. A composite splice section from Site M0059 was analysed at a decadal resolution to study changes in salinity, nutrient conditions and other surface water column parameters based on changes in diatom assemblages and on quantitative diatom‐based salinity inferences. A mesotrophic slightly brackish assemblage is seen in the lowermost analysed depths, corresponding to 7800–7500 cal. a BP . An increase in salinity and nutrient content of the water column leads into a meso‐eutrophic brackish phase. The observed salinity increase is rapid, lasting from 7500 to 7150 cal. a BP . Subsequently, the Little Belt becomes oligotrophic and is dominated by tychopelagic diatoms from c . 7100 to c . 3900 cal. a BP . This interval contains some of the highest salinities observed followed by diatom assemblages similar to those of the Northern Atlantic Ocean, composed primarily of cosmopolitan open ocean marine diatoms. A return to tychopelagic productivity is seen from 3850 to 980 cal. a BP . Anthropogenic eutrophication is detected in the last 300 years of the record, which intensifies in the uppermost sediments. These results represent the first decadally resolved record in the region and provide new insight into the transition to a brackish basin and subsequent ecological development.The large-scale shifts in the salinity of the Baltic Sea over the Holocene are well understood and have been comprehensively documented using sedimentary proxy records. More recent work has focused on understanding how past salinity fluctuations have affected other ecological parameters (e.g. primary productivity, nutrient content) of the Baltic basin, and salinity changes over key events and over short time scales are still not well understood. The International Ocean Drilling Program Expedition 347 cored the Baltic basin in order to collect basin-wide environmental records through a glacial-interglacial cycle. Site M0059 is located in the Little Belt between the Baltic Sea and the Atlantic Ocean. A composite splice section from Site M0059 was analysed at a decadal resolution to study changes in salinity, nutrient conditions and other surface water column parameters based on changes in diatom assemblages and on quantitative diatom-based salinity inferences. A mesotrophic slightly brackish assemblage is seen in the lowermost analysed depths, corresponding to 7800-7500 cal. a BP. An increase in salinity and nutrient content of the water column leads into a meso-eutrophic brackish phase. The observed salinity increase is rapid, lasting from 7500 to 7150 cal. a BP. Subsequently, the Little Belt becomes oligotrophic and is dominated by tychopelagic diatoms from c. 7100 to c. 3900 cal. a BP. This interval contains some of the highest salinities observed followed by diatom assemblages similar to those of the Northern Atlantic Ocean, composed primarily of cosmopolitan open oceanmarine diatoms. A return to tychopelagic productivity is seen from 3850 to 980 cal. a BP. Anthropogenic eutrophication is detected in the last 300 years of the record, which intensifies in the uppermost sediments. These results represent the first decadally resolved record in the region and provide new insight into the transition to a brackish basin and subsequent ecological development.Peer reviewe

    Multidisciplinary investigation of two Egyptian child mummies curated at the University of Tartu Art Museum, Estonia (Late/Graeco-Roman Periods)

    Get PDF
    Two ancient Egyptian child mummies at the University of Tartu Art Museum (Estonia) were, according to museum records, brought to Estonia by the young Baltic-German scholar Otto Friedrich von Richter, who had travelled in Egypt during the early 19th century. Although some studies of the mummies were conducted, a thorough investigation has never been made. Thus, an interdisciplinary team of experts studied the remains using the most recent analytical methods in order to provide an exhaustive analysis of the remains. The bodies were submitted for osteological and archaeothanatological study, radiological investigation, AMS radiocarbon dating, chemical and textile analyses, 3D modelling, entomological as well as aDNA investigation. Here we synthesize the results of one of the most extensive multidisciplinary analyses of ancient Egyptian child mummies, adding significantly to our knowledge of such examples of ancient funerary practices.© 2020 Oras et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Methane exchange in a boreal forest estimated by gradient method

    Get PDF
    Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions

    Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy

    Get PDF
    This work was supported by the UK Engineering and Physical Sciences Research Council under grant EP/J01771X/1, A European Union FAMOS project (FP7 ICT, 317744), and the ’BRAINS’ 600th anniversary appeal, and Dr. E. Killick. We would also like to thank The RS Macdonald Charitable Trust for funding support. KD acknowledges support of a Royal Society Leverhulme Trust Senior Fellowship. This work was also supported by the PreDiCT-TB consortium [IMI Joint undertaking grant agreement number 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution (www.imi.europa.eu)]The ability to identify and characterise individual cells of the immune system under label-free conditions would be a significant advantage in biomedical and clinical studies where untouched and unmodified cells are required. We present a multi-modal system capable of simultaneously acquiring both single point Raman spectra and digital holographic images of single cells. We use this combined approach to identify and discriminate between immune cell populations CD4+ T cells, B cells and monocytes. We investigate several approaches to interpret the phase images including signal intensity histograms and texture analysis. Both modalities are independently able to discriminate between cell subsets and dual-modality may therefore be used a means for validation. We demonstrate here sensitivities achieved in the range of 86.8% to 100%, and specificities in the range of 85.4% to 100%. Additionally each modality provides information not available from the other providing both a molecular and a morphological signature of each cell.Publisher PDFPeer reviewe

    Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica)

    Get PDF
    We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acerplatanoides) revealed a “home field advantage” of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself

    Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?

    Get PDF
    Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) ‘below-ground overyielding’ of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m−2 in the species-poor to species-rich stands, with 63–77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that ‘below-ground overyielding’ in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species
    • 

    corecore