28 research outputs found

    Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool

    Get PDF
    Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system's predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section

    Bacteria-instructed B cells cross-prime naïve CD8+ T cells triggering effective cytotoxic responses.

    Get PDF
    In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.We are grateful to advanced light microscopy and cytometry facilities of CNB for technical supporting. The research is supported by grants: SAF2017-84091- R, and PID2020-116393RB-I00/AEI/10.13039/501100011033, financed by MCIN, BFERO2020.04, financed by FERO foundation and PI20/0036 from ISCIII. RGF is supported by BES-2016-076526 from the Spanish Ministry of Economy Industry and Competitiveness, JOP is supported by fellowship LCF/BQ/SO16/ 52270012 from La Caixa, BHF is supported by FPU18/00895 and AMP by FPU18/03199 from Ministry of Science, Innovation and Universities. LdC has been supported by Juan de la Cierva grant IJC2018-035386-I and a contract associated to SEV-2017-0712. EVC, AMP, AMAM, and NMM belong to the Spanish National Research Council (CSIC)’s Cancer Hub. Synopsis image made with biorender.com by Eduardo Roman Camacho and Esteban Veiga. We thanks Prof. Dan Portnoy who kindly provided bacterial strains.S

    Impacts of Bar-driven Shear and Shocks on Star Formation

    Get PDF
    Bars drive gas inflow. As the gas flows inward, shocks and shear occur along the bar dust lanes. Such shocks and shear can affect the star formation (SF) and change the gas properties. For four barred galaxies, we present Hα velocity gradient maps that highlight bar-driven shocks and shear using data from the PHANGS-MUSE and PHANGS-ALMA surveys, which allow us to study bar kinematics in unprecedented detail. Velocity gradients are enhanced along the bar dust lanes, where shocks and shear are shown to occur in numerical simulations. Velocity gradient maps also efficiently pick up H ii regions that are expanding or moving relative to the surroundings. We put pseudo-slits on the regions where velocity gradients are enhanced and find that Hα and CO velocities jump up to ∼170 km s−1, even after removing the effects of circular motions due to the galaxy rotation. Enhanced velocity gradients either coincide with the peak of CO intensity along the bar dust lanes or are slightly offset from CO intensity peaks, depending on the objects. Using the Baldwin–Philips–Terlevich BPT diagnostic, we identify the source of ionization on each spaxel and find that SF is inhibited in the high-velocity gradient regions of the bar, and the majority of those regions are classified as a low-ionization nuclear emission-line region (LINER) or composite. This implies that SF is inhibited where bar-driven shear and shocks are strong. Our results are consistent with the results from the numerical simulations that show SF is inhibited in the bar where the shear force is strong

    Ethnicity and Clinical Outcomes in Patients Hospitalized for COVID-19 in Spain: Results from the Multicenter SEMI-COVID-19 Registry

    Get PDF
    Background: This work aims to analyze clinical outcomes according to ethnic groups in patients hospitalized for COVID-19 in Spain. (2) Methods: This nationwide, retrospective, multicenter, observational study analyzed hospitalized patients with confirmed COVID-19 in 150 Spanish hospitals (SEMI-COVID-19 Registry) from 1 March 2020 to 31 December 2021. Clinical outcomes were assessed according to ethnicity (Latin Americans, Sub-Saharan Africans, Asians, North Africans, Europeans). The outcomes were in-hospital mortality (IHM), intensive care unit (ICU) admission, and the use of invasive mechanical ventilation (IMV). Associations between ethnic groups and clinical outcomes adjusted for patient characteristics and baseline Charlson Comorbidity Index values and wave were evaluated using logistic regression. (3) Results: Of 23,953 patients (median age 69.5 years, 42.9% women), 7.0% were Latin American, 1.2% were North African, 0.5% were Asian, 0.5% were Sub-Saharan African, and 89.7% were European. Ethnic minority patients were significantly younger than European patients (median (IQR) age 49.1 (40.5-58.9) to 57.1 (44.1-67.1) vs. 71.5 (59.5-81.4) years, p < 0.001). The unadjusted IHM was higher in European (21.6%) versus North African (11.4%), Asian (10.9%), Latin American (7.1%), and Sub-Saharan African (3.2%) patients. After further adjustment, the IHM was lower in Sub-Saharan African (OR 0.28 (0.10-0.79), p = 0.017) versus European patients, while ICU admission rates were higher in Latin American and North African versus European patients (OR (95%CI) 1.37 (1.17-1.60), p < 0.001) and (OR (95%CI) 1.74 (1.26-2.41), p < 0.001). Moreover, Latin American patients were 39% more likely than European patients to use IMV (OR (95%CI) 1.43 (1.21-1.71), p < 0.001). (4) Conclusion: The adjusted IHM was similar in all groups except for Sub-Saharan Africans, who had lower IHM. Latin American patients were admitted to the ICU and required IMV more often

    Healthcare-Associated Pneumonia: Don't Forget About Respiratory Viruses!

    Get PDF
    Introduction: Healthcare-associated infections are an important cause of morbidity and mortality, are among the most common adverse events in healthcare, and of them, pneumonia is the most commonly reported. Our objective was to evaluate the incidence and clinical outcome of respiratory viruses in hospital-acquired pneumonia (HAP).Methods: This was a prospective cohort study, include patients aged between 0 and 18 who fulfilled Centers for Diseases Control and Prevention (CDC) criteria for HAP. Demographic and clinical data were obtained, and a nasopharyngeal swab specimen was taken for the detection of respiratory viruses. All included patients were monitored until discharge to collect data on the need for mechanical ventilation, intensive care unit (ICU) admission, and mortality. All-cause 30-day mortality was also ascertained.Results: Four thousand three hundred twenty-seven patients were followed for 42,658 patient-days and 5,150 ventilator-days. Eighty-eight patients (2.03%) met the CDC criteria for HAP, 63 patients were included, and clinical and epidemiological characteristics showed no statistically significant differences between patients with virus associated healthcare-associated pneumonia (VAHAP) and those with non-viral healthcare-associated pneumonia (NVHAP). At least one respiratory virus was detected in 65% [95% CI (53–77)] of episodes of HAP, with a single viral pathogen observed in 53.9% and coinfection with 2 viruses in 11.1% of cases. The outcome in terms of ICU admission, mechanical ventilation and the 30-day mortality did not show a significant difference between groups.Conclusions: In two-thirds of the patients a respiratory virus was identified. There was no difference in mortality or the rest of the clinical outcome variables. About half of the patients required mechanical ventilation and 10% died, which emphasizes the importance of considering these pathogens in nosocomial infections, since their identification can influence the decrease in hospital costs and be taken into account in infection control policies

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    A tuneable genetic switch for tight control of tac promoters in Escherichia coli boosts expression of synthetic injectisomes

    No full text
    Abstract Biosafety of engineered bacteria as living therapeutics requires a tight regulation to control the specific delivery of protein effectors, maintaining minimum leakiness in the uninduced (OFF) state and efficient expression in the induced (ON) state. Here, we report a three repressors (3R) genetic circuit that tightly regulates the expression of multiple tac promoters (Ptac) integrated in the chromosome of E. coli and drives the expression of a complex type III secretion system injectisome for therapeutic protein delivery. The 3R genetic switch is based on the tetracycline repressor (TetR), the non‐inducible lambda repressor cI (ind‐) and a mutant lac repressor (LacIW220F) with higher activity. The 3R switch was optimized with different protein translation and degradation signals that control the levels of LacIW220F. We demonstrate the ability of an optimized switch to fully repress the strong leakiness of the Ptac promoters in the OFF state while triggering their efficient activation in the ON state with anhydrotetracycline (aTc), an inducer suitable for in vivo use. The implementation of the optimized 3R switch in the engineered synthetic injector E. coli (SIEC) strain boosts expression of injectisomes upon aTc induction, while maintaining a silent OFF state that preserves normal growth in the absence of the inducer. Since Ptac is a commonly used promoter, the 3R switch may have multiple applications for tight control of protein expression in E. coli. In addition, the modularity of the 3R switch may enable its tuning for the control of Ptac promoters with different inducers
    corecore