101 research outputs found

    Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells

    Get PDF
    The role of innate immune recognition by intestinal epithelial cells (IECs) in vivo is ill-defined. Here, we used highly enriched primary IECs to analyze Toll-like receptor (TLR) signaling and mechanisms that prevent inappropriate stimulation by the colonizing microflora. Although the lipopolysaccharide (LPS) receptor complex TLR4/MD-2 was present in fetal, neonatal, and adult IECs, LPS-induced nuclear factor κB (NF-κB) activation and chemokine (macrophage inflammatory protein 2 [MIP-2]) secretion was only detected in fetal IECs. Fetal intestinal macrophages, in contrast, were constitutively nonresponsive to LPS. Acquisition of LPS resistance was paralleled by a spontaneous activation of IECs shortly after birth as illustrated by phosphorylation of IκB-α and nuclear translocation of NF-κB p65 in situ as well as transcriptional activation of MIP-2. Importantly, the spontaneous IEC activation occurred in vaginally born mice but not in neonates delivered by Caesarean section or in TLR4-deficient mice, which together with local endotoxin measurements identified LPS as stimulatory agent. The postnatal loss of LPS responsiveness of IECs was associated with a posttranscriptional down-regulation of the interleukin 1 receptor–associated kinase 1, which was essential for epithelial TLR4 signaling in vitro. Thus, unlike intestinal macrophages, IECs acquire TLR tolerance immediately after birth by exposure to exogenous endotoxin to facilitate microbial colonization and the development of a stable intestinal host–microbe homeostasis

    Developmental switch of intestinal antimicrobial peptide expression

    Get PDF
    Paneth cell–derived enteric antimicrobial peptides provide protection from intestinal infection and maintenance of enteric homeostasis. Paneth cells, however, evolve only after the neonatal period, and the antimicrobial mechanisms that protect the newborn intestine are ill defined. Using quantitative reverse transcription–polymerase chain reaction, immunohistology, reverse-phase high-performance liquid chromatography, and mass spectrometry, we analyzed the antimicrobial repertoire in intestinal epithelial cells during postnatal development. Surprisingly, constitutive expression of the cathelin-related antimicrobial peptide (CRAMP) was observed, and the processed, antimicrobially active form was identified in neonatal epithelium. Peptide synthesis was limited to the first two weeks after birth and gradually disappeared with the onset of increased stem cell proliferation and epithelial cell migration along the crypt–villus axis. CRAMP conferred significant protection from intestinal bacterial growth of the newborn enteric pathogen Listeria monocytogenes. Thus, we describe the first example of a complete developmental switch in innate immune effector expression and anatomical distribution. Epithelial CRAMP expression might contribute to bacterial colonization and the establishment of gut homeostasis, and provide protection from enteric infection during the postnatal period

    Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease

    Get PDF
    Celiac disease (CD) is an enteropathy resulting from an abnormal immune response to gluten-derived peptides in genetically susceptible individuals. This immune response is initiated by intestinal transport of intact peptide 31-49 (p31-49) and 33-mer gliadin peptides through an unknown mechanism. We show that the transferrin receptor CD71 is responsible for apical to basal retrotranscytosis of gliadin peptides, a process during which p31-49 and 33-mer peptides are protected from degradation. In patients with active CD, CD71 is overexpressed in the intestinal epithelium and colocalizes with immunoglobulin (Ig) A. Intestinal transport of intact p31-49 and 33-mer peptides was blocked by polymeric and secretory IgA (SIgA) and by soluble CD71 receptors, pointing to a role of SIgA–gliadin complexes in this abnormal intestinal transport. This retrotranscytosis of SIgA–gliadin complexes may promote the entry of harmful gliadin peptides into the intestinal mucosa, thereby triggering an immune response and perpetuating intestinal inflammation. Our findings strongly implicate CD71 in the pathogenesis of CD

    From In Situ to satellite observations of pelagic Sargassum distribution and aggregation in the Tropical North Atlantic Ocean

    Get PDF
    International audienceThe present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggre-gations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m 2 area) nested within larger ones (of hundreds of km 2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargas-sum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine

    Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    Full text link
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam works on the imaging part. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms.Comment: 14 pages, 12 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki Takami, Editors, Proc. SPIE 9147 (2014)

    Perméabilité intestinale et sensibilité au gluten

    No full text
    Le gluten est responsable chez des patients génétiquement prédisposés d’une entéropathie appelée maladie cœliaque. Chez les malades cœliaques, les peptides du gluten sont capables de traverser l’épithélium intestinal sous forme intact alors qu’ils sont dégradés chez les sujets sains. Un transport transcellulaire des peptides du gluten médié par les IgA et l’expression ectopique de CD71 à la membrane apicale des entérocytes des malades cœliaques a été démontré. Le gluten est non seulement responsable de la maladie cœliaque mais il est aussi associé à des pathologies neurologiques, au diabète de type 1 et à des troubles intestinaux

    L'hyperperméabilité intestinale: un concept nouveau?

    No full text
    La barrière intestinale est la plus grande surface du corps en contact avec le milieu extérieur. Elle assure 2 fonctions principales: l'absorption d'ions, de nutriments et d'électrolytes et la protection contre l'entrée de pathogènes et/ou de substances luminales toxiques. Une altération de la perméabilité intestinale peut conduire à une entrée massive d'antigènes luminaux soupçonnés d'être impliqués dans la pathogenèse de maladies intestinales ou extra intestinales comme les maladies auto-immunes et le syndrome métabolique
    corecore