515 research outputs found

    X-ray fluorescence spectra of metals excited below threshold

    Full text link
    X-ray scattering spectra of Cu and Ni metals have been measured using monochromatic synchrotron radiation tuned from far above to more than 10 eV below threshold. Energy conservation in the scattering process is found to be sufficient to explain the modulation of the spectral shape, neglecting momentum conservation and channel interference. At excitation energies close to and above threshold, the emission spectra map the occupied local partial density of states. For the sub-threshold excitations, the high-energy flank of the inelastic scattering exhibits a Raman-type linear dispersion, and an asymmetric low energy tail develops. For excitation far below threshold the emission spectra are proportional to a convolution of the occupied and unoccuppied local partial densities of states.Comment: 10 pages, 3 figures, http://link.aps.org/doi/10.1103/PhysRevB.68.04511

    Water contamination of urban areas by pharmaceuticals

    Get PDF
    The occurrence and fate data of pharmaceuticals in the environment were described in the article. The main list of pharmaceuticals groups identified in surface and sewage waters was shown according to studies of laboratories in the U.S. and Europe. The main approaches for reduction of pharmaceuticals releasing into environment and monitoring of surface water were considered

    Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel

    Full text link
    The excitation energy dependence of the three-hole satellites in the L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured using synchrotron radiation. The satellite behavior in the non-radiative emission spectra at the L3 and L2 thresholds is compared and the influence of the Coster-Kronig channel explored. The three-hole satellite intensity at the L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold attributed to resonant processes at the 2p53d9 shake-up threshold. This is discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_

    Correction of non-linearity effects in detectors for electron spectroscopy

    Full text link
    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at different incident x-ray fluxes. Although we have used one spectrometer and detection system as an example, these methodologies should be useful for many other cases.Comment: 13 pages, 12 figure

    Intramolecular vibronic dynamics in molecular solids: C60

    Get PDF
    Vibronic coupling in solid C60 has been investigated with a combination of resonant photoemission spectroscopy (RPES) and resonant inelastic x-ray scattering (RIXS). Excitation as a function of energy within the lowest unoccupied molecular orbital resonance yielded strong oscillations in intensity and dispersion in RPES, and a strong inelastic component in RIXS. Reconciling these two observations establishes that vibronic coupling in this core hole excitation leads to predominantly inelastic scattering and localization of the excited vibrations on the molecule on a femtosecond time scale. The coupling extends throughout the widths of the frontier valence bands.

    Transition from a molecular to a metallic adsorbate system: Core-hole creation and decay dynamics for CO coordinated to Pd

    Get PDF
    Two alternative methods to experimentally monitor the development of a CO-adsorption system that gradually changes from molecular to metallic are presented: firstly by adsorption of CO on Pd islands of increasing size deposited under UHV conditions, and secondly by growth of a Pd carbonyl-like species, formed by Pd deposition in CO atmosphere. The change in screening dynamics as a function of the number of metal atoms was investigated, using x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and core-hole-decay techniques. For CO adsorbed on UHV-deposited islands, the electronic properties of the whole CO-Pd complex is strongly dependent on island size and CO coverage: large amounts of CO result in a reduced screening ability, and small effects characteristic of molecular systems can be detected even for islands containing about 100 Pd atoms. If about half of the CO overlayer is desorbed, the CO-Pd complex exhibits a relaxation upon core ionization that is nearly as efficient as for metallic systems, even for the smallest islands (of the order of 10 Pd atoms). The growth of the carbonyl-like compound proceeds via formation of Pd-Pd bonds and has a relatively well-defined local structure. It is demonstrated that the properties of this compound approach those of an extended system for increasing coverages, and it may therefore also serve as an important link between a carbonyl and CO adsorbed on a metallic surface. A brief discussion is also given in which the results are discussed in terms of electronic properties of the thin alumina film versus bulk alumina and the applicability of the former to the construction of model catalysts

    Interaction of CO with Pd clusters supported on a thin alumina film

    Get PDF
    The adsorption of CO on Pd particles supported on a thin alumina film has been studied employing high resolution x‐ray photoelectron spectroscopy (XPS) and x‐ray absorption spectroscopy (XAS), and of special interest was the CO–Pd interaction as a function of island size and CO coverage. CO saturation at 90 K leads to an overlayer characterized by a rather weak CO–Pd hybridization as manifested by the core ionized and core excited states. The interaction strength gradually increases with island size. Desorption of parts of the overlayer results in CO more strongly interacting with the Pd islands. A comparison between the XPS and XAS energies yields a behavior indistinguishable from metallic systems for islands larger than 15 Å, i.e., the XPS binding energy appears near the x‐ray absorption onset. For the smallest islands (5 Å), a CO coverage dependent reversal of the XPS–XAS energy relation was observed, indicating a drastic change in the screening ability of the CO–Pd complex
    corecore