78 research outputs found

    Energy balance closure of two bog surfaces in central Sweden

    Get PDF
    Typical bogs in the boreal forest zone can be characterised by hummock and hollow micro-topography and sparsely vegetated surfaces. Their energy balance has been studied much less than for other types of surface, i.e. fields and forests. Micrometeorological measurements were carried out in central Sweden at two bogs in different summer seasons. From the measured profiles of wind speed, air temperature and humidity, the turbulent sensible and latent heat fluxes were calculated according to the Monin-Obukhov similarity theory. The daytime sensible and latent heat fluxes were typically of similar size, with the latent heat fluxes still being slightly higher. Independent measurements of turbulent, radiative and ground heat fluxes allowed to consider the surface energy balance closure. During fair weather conditions, the net radiation exceeded the sum of turbulent and ground heat fluxes by up to 200 W m-2 when measurements with ground heat flux plates were used in the analysis. It is difficult to attribute this discrepancy to errors in turbulent fluxes, because the fetch was long enough (400 m or more). Also, the size and shape of the two bogs and the positions of the tower were different, but the discrepancies in the energy budget were very similar. It is, however, known that measurements with heat flux plates in the peat are problematic. The ground heat flux measured with plates was very low and was considered to be the most unreliable component of the surface energy balance. An alternative method from the literature, which used temperature measurements in the peat and at the surface but did not require any information on the soil thermal properties near the surface, was used for alternative ground-heat-flux calculations. The use of this method improved the closure of the surface energy balance, but an about 100 W m-2 large discrepancy still remained unexplained. A further improvement is expected when lateral heat exchange in the hummocks could be taken into account

    Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance

    Get PDF
    Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC ( FC ) and the storage flux ( SC ). SC is the rate of change of a scalar, CO 2 molar fraction in this case, within the control volume underneath the EC measurement level. It is given by the difference in the quasi-instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. The approaches used to estimate SC largely vary, from measurements based on a single sampling point usually located at the EC measurement height, to measurements based on profile sampling. Generally a single profile is used, although multiple profiles can be positioned within the control volume. Measurement accuracy reasonably increases with the spatial sampling intensity, however limited resources often prevent more elaborated measurement systems. In this study we use the experimental dataset collected during the ADVEX campaign in which turbulent and non-turbulent fluxes were measured in three forest sites by the simultaneous use of five towers/profiles. Our main objectives are to evaluate both the uncertainty of SC that derives from an insufficient sampling of CO 2 variability, and its impact on concurrent NEE estimates.Results show that different measurement methods may produce substantially different SC flux estimates which in some cases involve a significant underestimation of the actual SC at a half-hourly time scales. A proper measuring system, that uses a single vertical profile of which the CO 2 sampled at 3 points (the two closest to the ground and the one at the lower fringe of the canopy layer) is averaged with CO 2 sampled at a certain distance and at the same height, improves the horizontal representativeness and reduces this (proportional) bias to 2–10% in such ecosystems. While the effect of this error is minor on long term NEE estimates, it can produce significant uncertainty on half-hourly NEE fluxes

    Impact of coordinate rotation on eddy covariance fluxes at complex sites

    Get PDF
    The choice of coordinate system to calculate eddy covariance fluxes becomes particularly relevant at complex measurement sites. The traditional way is to perform double rotation (DR) of the coordinate system i.e., to calculate turbulent fluxes in a coordinate system that is aligned with the flow streamlines within the flux averaging period (e.g., Kaimal and Finnigan, 1994). The second approach, the so-called planar-fitted (PF) coordinate system, averages the flow over a longer period of time, in practice a month or more. The PF method allows to derive an intercept coefficient of the vertical wind speed which can be attributed to the offset of the sonic anemometer or the average vertical flow related to meteorological conditions. We evaluated the variants of the PF methods using data from a variety of sites ranging from complex urban and forest sites to nearly ideal forest and peatland sites. At complex sites, we found that the intercept of the vertical wind speed derived from the PF method is a function of wind direction, time of day and/or stability. The sector-wise PF (SPF) method frequently led to insignificant statistical relationships. We tested a continuous PF (CPF) method where the relationship establishing the coordinate frame was represented as the continuous function in the form of Fourier series. The method enabled to obtain the PF with lower uncertainty as compared to the SPF method, by selecting necessary number of harmonics for each site based on confidence intervals of estimated parameters. Therefore, we recommend to use the CPF method in cases when the number of observations in some wind direction interval is low or the obtained SPF is insignificant due to large variance in measurements. We also showed that significant systematic difference can exist in cumulative turbulent fluxes between the DR and PF methods over a longer period of time. Derived vertical advection of carbon dioxide exhibited large variability with wind direction due to topography at complex sites and therefore, without considering horizontal advection, cannot be used to improve the net ecosystem exchange estimation during nocturnal, low turbulence conditions.Peer reviewe

    An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations

    Get PDF
    We present a statistical framework to identify regional signals in station-based CO2 time series with minimal local influence. A curve-fitting function is first applied to the detrended time series to derive a harmonic describing the annual CO2 cycle. We then combine a polynomial fit to the data with a short-term residual filter to estimate the smoothed cycle and define a seasonally adjusted noise component, equal to 2 standard deviations of the smoothed cycle about the annual cycle. Spikes in the smoothed daily data which surpass this +/- 2 sigma threshold are classified as anomalies. Examining patterns of anomalous behavior across multiple sites allows us to quantify the impacts of synoptic-scale atmospheric transport events and better understand the regional carbon cycling implications of extreme seasonal occurrences such as droughts.Peer reviewe

    Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018

    Get PDF
    The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.Peer reviewe

    Methane exchange in a boreal forest estimated by gradient method

    Get PDF
    Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions
    • …
    corecore