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Abstract. We present a statistical framework to identify re-
gional signals in station-based CO2 time series with mini-
mal local influence. A curve-fitting function is first applied
to the detrended time series to derive a harmonic describ-
ing the annual CO2 cycle. We then combine a polynomial fit
to the data with a short-term residual filter to estimate the
smoothed cycle and define a seasonally adjusted noise com-
ponent, equal to 2 standard deviations of the smoothed cy-
cle about the annual cycle. Spikes in the smoothed daily data
which surpass this±2σ threshold are classified as anomalies.
Examining patterns of anomalous behavior across multiple
sites allows us to quantify the impacts of synoptic-scale at-
mospheric transport events and better understand the regional
carbon cycling implications of extreme seasonal occurrences
such as droughts.

1 Introduction

Continuous measurements of long-lived atmospheric green-
house gases (GHGs) at ground-based monitoring stations ex-
hibit variations at multiple timescales. These include a well-
established diurnal cycle and an annual pattern linked to sea-
sonality which generally exist on top of the long-term trend

of the background concentration. Other variations, related to
localized surface fluxes or regional-scale atmospheric trans-
port patterns, are observable at synoptic frequencies last-
ing from 1–2 d to several weeks, while others reflect longer-
term meteorological occurrences such as droughts or ocean
circulation anomalies. Identification of these latter compo-
nents can reveal much about the intensity and geographic
extent of specific atmospheric events while also improv-
ing understanding of background signal evolution. Extract-
ing them, however, requires a methodology to decompose
the signal into “background” and “non-background” compo-
nents and to differentiate meteorology-driven regional sig-
nals from spikes due to local emissions, biospheric uptake
and other forms of signal noise.

We define “background” here as “the concentration of a
given species in a pristine air mass in which anthropogenic
impurities of a relatively short lifetime are not present” (IU-
PAC, 1997). Various methods exist to extract background
signals in atmospheric time series. These include back-
trajectory analyses that categorize readings based on air
provenance (e.g., Schuepbach et al., 2001; Balzani Loöv et
al., 2008; Cui et al., 2011) and the application of chemi-
cal filters using markers such as 222Rn (e.g., Biraud et al.,
2000; Pal et al., 2015; Chambers et al., 2016) or NOy and
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CO (e.g., Parrish et al., 1991; Zellweger et al., 2003). Al-
though such approaches yield reliable estimates, they are of-
ten labor-intensive or require sophisticated transport model-
ing or additional instrumentation and must take into account
site-specific measurement conditions and data availability.
Statistical algorithms provide high-precision, computation-
ally inexpensive alternatives to these techniques. These com-
monly involve a two- or three-step process in which data are
first smoothed using filters or polynomial curve fitting then
subsequently refined through the identification of outliers,
characterized as points which deviate from the curve by more
than a specified threshold (e.g.,±σ ,±2σ , or±3σ , where σ is
the standard deviation of the residuals about a smooth curve
fit to the data).

Already in the late 1980s, Thoning et al. (1989) devel-
oped a filtering technique to separate the annual cycle from
the long-term trend and approximate the background signal
of the CO2 record at Mauna Loa (Hawaii). More recently,
O’Doherty et al. (2001) extracted non-background compo-
nents of atmospheric CHCl3 time series by fitting a polyno-
mial to the daily minima of a moving 121 d span of mea-
surements. They then subtracted the polynomial fit from the
data and estimated σ from the measurements below the me-
dian of the residual distribution. Measurements on the mid-
dle day of each 121 d period exceeding ±3σ were flagged as
“polluted” and removed. In a second iteration, readings be-
tween ±2σ and ±3σ above the median of the newly refined
residual set were marked as “possibly polluted” and subse-
quently removed if immediately adjacent to “polluted” data
points. Giostra et al. (2011) applied a similar approach to at-
mospheric halocarbon records. They calculated a probability
density function (PDF) using the deviations of all data points
from σ , predefined as the 16th percentile of measurements
within a 30 d span. A Gaussian curve was then defined us-
ing σ and the median value of the PDF, and a Gamma curve
was fit such that the sum of the two curves yielded a best-
fit to the PDF. The background was approximated using all
data points below the intersection of the Gamma curve and
the right-hand branch of the Gaussian curve. Ruckstuhl et
al. (2012) estimated background signals in atmospheric CO
and HFC-152a series by applying a localized linear regres-
sion to a given span of data points and removing points which
deviated by more than the σ value of the negative (left side)
residuals within each successive, overlapping span. Individ-
ual points were then weighted for robustness according to
their distance from the newly defined background curve, with
iterative applications further refining the dataset. Apadula et
al. (2019) developed an algorithm to subtract outliers from
hourly CO2 datasets. They first removed all values which dif-
fered by more than a specified threshold ρ from the median
value within a sliding 21 d window and subsequently rejected
values that differed by more than ρ from the mean value of
the remaining points.

Such methods have been widely applied to estimate base-
line concentrations of atmospheric trace gases and, in some

instances, to identify the occurrence of short-term signal
spikes in time series (e.g., El Yazidi et al., 2018). Lacking
in the current literature, however, is a comprehensive statis-
tical framework for the extraction of non-background events
occurring at synoptic (1–2 d to several weeks) to seasonal
timescales. We thus present here a novel approach to identify
exceptional non-background events (“anomalies”) in atmo-
spheric time series based on statistical curve-fitting, LOESS
smoothing and outlier detection with the aim of developing
a protocol for the detection of anomalous episodes of synop-
tic and seasonal duration. The methodology is designed for
application to station data from the Integrated Carbon Obser-
vation System (ICOS) network. In particular, our goal is to
investigate whether seasonal- and synoptic-length deviations
from background concentrations can be discerned in near real
time (NRT) through statistical filtering and cross-referencing
observations from multiple sites and to present a framework
for communicating information about such events to station
managers and other end users.

We focus primarily on CO2, although we validate our
detection of wintertime CO2 signal peaks by applying our
methodology to concurrent CH4 time series. In the winter
months, since carbon exchanges related to terrestrial ecosys-
tem exchange are relatively limited, the timing of synoptic-
length anomalies observed in CO2 and CH4 signals should
be similar as these are linked principally to changes in the
predominant upwind air source. Validation of summer CO2
anomaly patterns using CH4 is impractical due to the domi-
nant role of the biosphere on CO2 concentrations during the
growing season.

We place particular emphasis on the discernibility of
anomalies observable at multiple European sites since we
reason that these are most likely to represent continent-wide
terrestrial biosphere changes or synoptic-scale transport pat-
terns as opposed to localized (within ∼ 100 km) contamina-
tion effects or other forms of noise. Moreover, the ability to
identify these multi-site events is critical in communicating
to station managers in near real time the presence of atypical
signals and in mapping the footprint of regional carbon cycle
fluctuations.

Finally, we present the methodology in the context of a
near-real-time anomaly detection algorithm (ADA) devel-
oped and employed at the ICOS Atmospheric Thematic Cen-
tre (ICOS ATC). The algorithm is concise and portable and
is intended to be used with multi-year datasets consisting of
validated (level 2) and NRT (level 1) daily datasets from sites
in the ICOS network. Both R and Python implementations of
the algorithm currently exist, but the methodology can the-
oretically be adapted to any programming language by any
user with access to the ICOS Carbon Portal (ICOS CP) or
other standardized GHG data. The methodology described in
the following sections refers to the R implementation of the
algorithm.
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2 Materials and methods

We conduct our analysis using daily aggregated CO2 and
CH4 data from 10 European sites. At each, we approximate
the background signal of both trace gases using the curve-
fitting method of Thoning et al. (1989). We then define an
“envelope” representing the range of normal or expected sea-
sonal variability in the signal. The envelope is calculated
from the smoothed cycle, which consists of a polynomial
function fit to the data and a short-term residual filter. The
upper and lower bounds of the envelope are defined by the
second standard deviation (2σ ) of the smoothed cycle about
the background signal and are adjusted to account for sea-
sonal effects on signal stability.

We then smooth the daily data using a LOESS function
and evaluate the smoothed daily data in relation to the ±2σ
envelope. In our case, we select two different settings for the
short-term filter and the LOESS smoothing span: 30 and 90 d.
These settings are user-definable. The 30 d analysis is applied
to the extended winter season (November–March), where our
goal is to discern anomalies indicative of shifts in atmo-
spheric transport patterns. These synoptic-scale anomalies
(SSAs) are identified as peaks where consecutive smoothed
daily measurements fall outside the ±2σ envelope. The 90 d
analysis is applied to the growing season (April–October)
with the aim of identifying seasonal anomalies. At this wider
bandwidth, the smoothing function should be minimally af-
fected by shorter (< 1 month) regional signals or SSAs, and
thus large spikes detected are taken to reflect seasonal-length
perturbations such as droughts, springtime carbon uptake or
mesoscale circulation anomalies.

The distinction we make between wintertime and sum-
mertime signals is not meant to imply that SSAs occur ex-
clusively in winter nor that “seasonal” anomalies are best
characterized as summertime-only events. It is rather, in our
view, the most logical way to divide the analysis while il-
lustrating the scope of the algorithm’s functionalities. This
is because the distinction we make between SSAs and sea-
sonal anomalies is primarily based on the perceived underly-
ing causes of each and not necessarily their duration. For ex-
ample, the persistent formation of easterly transport patterns
in the wintertime could, in some cases, result in positive CO2
anomalies that will appear at the 90 d seasonal bandwidth.
However, such anomalies would be more representative of a
sequence of similar synoptic-scale transport regimes than a
seasonal-length reduction in photosynthetic activity or other
irregularity in regional carbon cycling. In the summertime,
identifying transport-driven SSAs in the record is compli-
cated by a slightly less well-defined North Atlantic Oscil-
lation (NAO) index than in winter (Bladé et al., 2011) and
the contemporaneous effects of variations in terrestrial net
primary production (NPP), which often occur over slightly
longer timescales. Our aim in applying a 90 d smoothing span
to the summer data is thus to filter out these synoptic signals

to the extent possible and focus only on longer-term pertur-
bations.

2.1 Observations

We analyze continuous time series data from 10 stations,
which are part of the Atmosphere network of the European
ICOS research infrastructure (ICOS RI, 2020a, b). ICOS pro-
vides high-precision, long-term and standardized observa-
tions of the carbon cycle such as GHG concentrations in the
atmosphere and GHG exchanges between the atmosphere,
ecosystems and oceans. All ICOS stations are rigorously as-
sessed before being labeled, i.e., before receiving approval
to join the network (Yver-Kwok et al., 2021). Daily CO2
and CH4 records for the 10 stations are available through the
ICOS CP (https://www.icos-cp.eu, last access: 5 July 2021)
from varying start dates, depending on the date an individ-
ual station joined the ICOS network. Table 1 summarizes the
stations selected for the analysis and gives the time range of
analyzed data at each.

For four of the selected sites, we use only the complete
level 2 (L2) records available through the ICOS CP. At the
other sites, indicated in Table 1, we use slightly longer his-
torical records obtained from the ICOS ATC data products
database. We first concatenate all available pre-L2 and L2
daily data (ICOS RI, 2020b) together with daily near-real-
time (L1) data (ICOS RI, 2018), which are typically avail-
able for the past year or so. We then extract and aggregate
the afternoon (12:00–17:00 CET) values for each site except
for the two mountain sites (JFJ, PUY), where we extract and
aggregate nighttime values only (20:00–05:00 CET). These
time periods can be set by the user; however the general con-
vention in our field is to select the afternoon mean for non-
mountain sites since this generally represents optimal mixing
conditions of boundary layer air (e.g., Morgan et al., 2015; El
Yazidi et al., 2018). At the mountain sites, nighttime values
are used to capture the properties of subsiding air from the
free troposphere. The concatenated datasets are stored as R
data frames for the ensuing analysis.

The sites chosen are distributed throughout central and
northern Europe and include a mix of rural and mountain
sites – which are fairly remote and minimally affected by
nearby pollution sources – and sites in closer proximity to
large urban settlements or other sources of anthropogenic
contamination. Figure 1 shows the locations of the 10 sites.

2.2 CCGCRV curve fitting

CCGCRV (Thoning et al., 1989) is a curve fitting applica-
tion for long-lived GHG time series maintained at the Car-
bon Cycle Greenhouse Gases (CCGG) group of the Global
Monitoring Laboratory (GML) of the National Oceanic and
Atmospheric Administration (NOAA, USA). The version of
CCGCRV used here is applied as a stand-alone function in R
and is available from the NOAA GML server at https://gml.
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Table 1. The 10 monitoring stations used in the analysis from northernmost to southernmost. The ending date is 27 September 2020 in all
cases.

Station Start date Long name Longitude, latitude Elevation Sensor height
(m a.s.l.) (m a.g.l.)

SMR∗ 3 May 2015 Hyytiälä 24◦18′ E, 61◦51′ N 181 125
NOR 1 April 2017 Norunda 17◦29′ E, 60◦05′ N 46 100
HTM∗ 13 December 2016 Hyltemossa 13◦25′ E, 56◦06′ N 104 150
GAT 10 May 2016 Gartow 11◦27′ E, 53◦04′ N 70 341
LIN 8 October 2015 Lindenberg 14◦07′ E, 52◦10′ N 73 98
HPB 18 September 2015 Hohenpeißenberg 11◦01′ E, 47◦48′ N 934 149
OPE∗ 21 April 2011 Observatoire Pérenne de l’Environnement 05◦30′ E, 48◦33′ N 395 120
TRN∗ 7 June 2013 Trainou 02◦07′ E, 47◦58′ N 131 180
JFJ∗ 12 October 2014 Jungfraujoch 07◦59′ E, 46◦33′ N 3572 5
PUY∗ 4 April 2012 Puy-de-Dôme 02◦58′ E, 45◦46′ N 1465 10

∗ Records with pre-L2 data included.

Figure 1. Locations of ICOS sites.

noaa.gov/aftp/pub/john/ccgcrv/ (last access: 24 June 2021)
(Global Monitoring Laboratory, 2021).

The method is succinctly summarized by Pickers and
Manning (2015). Basically, a fit to a time series is first ob-
tained using a linear least squares regression following the
“LFIT” protocol, in which a linear function describing the
data is determined from an x2 minimization of the residu-
als (Press et al., 1996). The seasonal cycle (an annual, non-
sinusoidal oscillatory variation) and the long-term trend (the
multi-year growth rate in mean annual CO2) of the time
series are then approximated through the combination of a
polynomial and a harmonic function:

C(t)= a0+ a1t + a2t
2
+ . . .+ a(n−1)t

(n−1)

+

h∑
k=1

mk [sin(2πkt +ϕk)] , (1)

where t is the time in years; n is the number of terms in the
polynomial (typically three); a0, a1, . . ., a(n−1) are constants;
h represents the nth harmonic (typically four); andmk and ϕk
define the magnitude and phase of each successive sinusoidal
component.

Next, a fast Fourier transform (FFT) algorithm is applied
to the residuals of the input data to C(t) in order to retain
short-term and interannual variations in the fitted curve. The
data are transformed from the time domain into the frequency
domain and multiplied by a low-pass filter to remove varia-
tions with frequencies higher than a specified cutoff thresh-
old. An inverse FFT is then used to transform the filtered
data back to the time domain. The low-pass filter function is
represented as

H(f )= exp

[
− ln(2)×

(
f
fc

)6
]
, (2)

where fc is the cutoff frequency in cycles per year. The low-
pass filter is applied to the residuals twice, once with a short-
term cutoff value (fc = fs) to smooth the data and once with
a long-term cutoff (fc = fl) to capture interannual variations
in the data not characterized by the polynomial part of C(t)
and to remove any remaining influence of the seasonal cy-
cle. For fl, we use the default value of 0.55 cycles per year
(667 d).

Finally, the features of interest (e.g., the long-term trend
and the seasonal cycle amplitude) are derived by combin-
ing the relevant components of the fitting procedure. The
long-term trend is represented by the combination of the
polynomial part of C(t) with the fl filter (i.e., long-term
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trend=C(t)polynomial only+H(fl)). The seasonal cycle is ob-
tained by subtracting the long-term trend from the combina-
tion of C(t) and the fs filter (i.e., seasonal cycle= C(t)+
H(fs)− long-term trend). A more detailed description of the
routine can be found in Thoning et al. (1989) and on the
NOAA Earth System Research Laboratories (ESRL) website
at http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html
(last access: 10 December 2020).

2.3 Synoptic and seasonal anomaly detection

To develop the synoptic and seasonal anomaly detection al-
gorithm (ADA), we first apply CCGCRV to extract a back-
ground signal at each site. The time period used to calcu-
late this background curve is user-definable. In our case, we
use the full records available at each station. The background
curve is meant to approximate the mean annual cycle and is
composed of the long-term trend plus the harmonic part of
C(t) fitted to the detrended data. Figure 2 shows an example
of this procedure applied to the 2013–2020 CO2 data from
the TRN station.

We then extract the smoothed seasonal cycle, S(t), defined
as the function C(t) plus the short-term filter of the resid-
uals. We use two different settings for the short-term filter
fs, equivalent to 30 and 90 d. We then calculate the differ-
ence between S(t) and the harmonic on each day t for both
seasonal cycle curves to derive the vectors δC30 and δC90.
These are then used to compute variability vectors σ 30 and
σ 90, which are adjusted to reflect seasonal patterns in CO2
and CH4 variability. This adjustment is done by taking the
standard deviation of all δC values within a moving window
of 90 calendar days around t and 90 d around the same calen-
dar day in all other years in the record. Thus for each calendar
day d in a time series consisting of n years,

σd = SD
([
δCd−45 : δCd+45

]
y1
,
[
δCd−45 : δCd+45

]
y2
,

. . .,
[
δCd−45 : δCd+45

]
yn

)
. (3)

For example, the σ value for 10 January at TRN would be
the standard deviation of the δC values between 26 Novem-
ber 2013 and 24 February 2014, between 26 November 2014
and 24 February 2015, etc., up to 24 February 2020 (or as
many of those days exist in the record). The use of this
90 d window is based on the consideration that the ampli-
tude of deviations from the background signal is not uniform
throughout the year; variability tends to be higher in the win-
ter months when increased fossil fuel burning and decreased
vertical mixing tend to result in high positive signal spikes
and during the early spring months when enhanced photo-
synthesis and increased terrestrial carbon uptake induce large
negative peaks. The calculated σ values are thus used to pro-
duce envelopes about the background curve representing the
range of “normal” or expected variability in the signal, de-
pending on the time of year. In general, this is meant to en-
capsulate slight interannual fluctuations in the seasonal cycle.

Finally, the σ values are multiplied by 2 to further restrict the
definition of outlier events. The selection of a ±2σ envelope
width represents a compromise between the desire to disre-
gard smaller, site-specific signal excursions (which we term
“localized fluctuations”) to the extent possible while retain-
ing the capacity to capture the true magnitudes of atypical
regional events. Figure 3 shows the CCGCRV harmonic and
the 30 and 90 d smoothed, detrended seasonal cycle of CO2
at TRN for the period 2013–2020.

The algorithm next smooths the raw data via a LOESS (lo-
cally estimated scatterplot smoothing) function (Cleveland,
1979) implemented via the R stats package (R Core Team,
2019). This is done as a way of filtering the daily data and at-
tenuating the influence of short-duration, high-intensity sig-
nal spikes when categorizing deviations from the background
as anomalies vs. normal signal instabilities. Short-duration
(≤ 1 d) spikes are not uncommon in continuous greenhouse
gas measurements and are often related to instrument er-
rors or localized perturbations from contaminated air masses.
Smoothing the daily data ensures that these short-duration
spikes are less heavily weighted and that spikes will only
be considered non-background if part of a cluster of other
nearby measurements that fall outside the range of expected
variability. The LOESS algorithm is applied using a smooth-
ing span (bandwidth) of 30 and 90 d. Anomalous events are
then identified by comparing the smoothed daily values to
the respective ±2σ range for each day; i.e., the 30 d LOESS
curve is compared to the ±2σ30 envelope and the 90 d curve
to the ±2σ90 envelope.

The goal of the 30 d analyses is to identify synoptic-scale
anomalies (SSAs). We identify these as peaks in the signal
where the smoothed daily value is outside the ±2σ enve-
lope for at least 2 consecutive days. We focus these analy-
ses on the extended winter season (November–March) when
effects on the signal not directly related to synoptic-scale
meteorology – including terrestrial biosphere exchanges –
are minimized. We consider 30 d sufficiently wide to mask
short (≤ 1 d) spikes yet precise enough to detect the signals of
distinct atmospheric transport episodes (as opposed to more
generalized effects of seasonal trends in circulation patterns).
For example, winter weather in Europe may be influenced at
seasonal timescales by the phase and strength of the NAO
(e.g., Trigo et al., 2002; Haarsma et al., 2019), which can
produce broad signal anomalies in years with consistently de-
veloping strong NAO indicators. With a bandwidth of 30 d,
these broader patterns should be less apparent, while indi-
vidual synoptic events such as Scandinavian blocking (BLO)
regimes should still leave an identifiable imprint on the sig-
nal.

Although we focus primarily on CO2 in the analysis, we
also attempt to validate the SSA detection by applying the
methodology to concurrent CH4 records from the 10 sites.
Emissions of both CH4 and CO2 largely occur over the conti-
nents (Friedlingstein et al., 2020; Saunois et al., 2020). Thus,
if positive CO2 anomalies during the winter months coincide
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Figure 2. The background signal derived at TRN by combining the harmonic component of the CCGCRV function fit to the data and the
long-term trend component.

with periods of sustained transport of easterly winds from
the continental interior, such as when NAO conditions or
BLO regimes prevail, then they should be more or less syn-
chronized with CH4 spikes. Meanwhile, concentrations of
both species should approach background levels when west-
erly, marine-influenced winds predominate. Although this
approach is complicated slightly by the fact that the annual
CH4 cycle is less distinct than that of CO2, our envelope
is wide enough that measurements must be rather far from
the mean annual cycle determined by CCGCRV for several
consecutive days in order to register as SSAs. The method
should therefore be able to adequately discern anomalous
signal components for both species in most winters.

The 90 d analysis is intended for the extraction of longer-
term seasonal anomalies. In effect, any period when the 90 d
LOESS curve is outside the ±2σ90 envelope is considered
to be an anomalous event. At such a wide bandwidth, the
smooth curve should be minimally affected by regional sig-
nals lasting from a few days to a few weeks, leaving only a
broader signal representative of seasonal effects (Ruckstuhl
et al., 2012). Anomalies may be induced by enhanced spring
carbon uptake; extended droughts; or, to give a more germane
example, wide-scale emissions reductions due to global pan-
demics. For the 90 d application, we concentrate on the ex-
tended summer growing season (April–October) to examine
the capacities of the methodology in detecting large-scale ter-
restrial biosphere anomalies. We focus in particular on the
summer of 2018, which saw a spate of intense droughts and
heat waves across central and northern Europe that altered

continent-wide gross primary production (GPP) and CO2
storage and flux patterns (Lindroth et al., 2020; Ramonet et
al., 2020; Rinne et al., 2020; Wang et al., 2020).

3 Results

3.1 SSAs

Table 2 summarizes the results of the SSA extraction for the
10 sites for the period 1 November 2015 to 31 March 2020.
This period is selected since the winter of 2015–2016 is the
first year in which we have CO2 data available at enough
sites to accurately discern the number of localized fluctua-
tions detected at each site, for which we require that CO2
data must be present at no fewer than five sites. Localized
fluctuations are defined as SSAs with no analog at any other
site, i.e., spikes at a single site which do not coincide with
a similar spike elsewhere. These are identified manually af-
ter running the algorithm. Figure 4 shows the background
CO2 signal,±2σ envelope (shaded in gray) and 30 d LOESS
curve at each of the 10 sites. The period 1 July 2018 to 1 July
2019 is selected as an example. An analogous paneled figure
for CH4 is presented as Fig. 5.

Figures 6 and 7 show the difference between the LOESS
curves and the envelope boundaries for measurements out-
side of the ±2σ range for CO2 and CH4, respectively. Posi-
tive SSAs (above the envelope) are shown in red, while neg-
ative SSAs are shown in blue. Periods where measurements
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Figure 3. The smoothed, detrended seasonal cycle at TRN (red) extracted using (a) 30 and (b) 90 d short-term filters of the CCGCRV
function residuals. 1CO2 represents the calculated mean seasonal variation in CO2, excluding the long-term trend.

Table 2. Total number of SSAs in the CO2 signal extracted by the
ADA for the period 1 November 2015 to 31 March 2020 based on
the ±2σ envelopes defined using the 30 d smoothed seasonal cy-
cle. Localized fluctuations are site-specific events with no analog at
any other site (data must be present at a minimum of five sites for
comparison).

Station Total SSAs Localized fluctuations
(positive, negative) (positive, negative)

SMR 6 (5, 1) 1 (1, 0)
NOR 6 (5, 1) 0 (0, 0)
HTM 7 (5, 2) 1 (0, 1)
GAT 6 (4, 2) 3 (1, 2)
LIN 6 (5, 1) 1 (1, 0)
HPB 6 (5, 1) 0 (0, 0)
OPE 2 (2, 0) 0 (0, 0)
TRN 6 (6, 0) 1 (1, 0)
JFJ 13 (7, 6) 5 (1, 4)
7 (5, 2) 2 (1, 1)

fall within the envelope are represented by flat, black lines.
Note that only winter periods (November–March) are shown.

Overall, the algorithm produces similar patterns for both
CO2 and CH4 at the three Scandinavian sites (SMR, NOR,
HTM). In particular, the ADA seems to identify simul-
taneous positive CO2 anomalies in November 2018, Jan-
uary/February 2019 and November 2019 at SMR, NOR and
HTM. These three northernmost sites also share some simi-
larities with the three German sites (GAT, LIN, HPB); both
the November 2018 spike and the early 2019 spike are cap-
tured at HPB for both trace gases, while the November 2018
spike is captured at LIN for CO2. Regarding the CH4 records,
the same November 2018 spike is captured at HTM and HPB,
while a similar early 2019 CO2 spike is seen at SMR, NOR,
HTM and HPB. Smaller synchronic positive CO2 anomalies
with broader geographic extents are seen in January 2017
(at HTM, GAT, LIN, HPB, OPE and TRN) and March 2018
(at NOR, HTM, GAT, LIN, HPB, TRN and PUY). In both
cases, these continent-wide anomalies are well synchronized
with the CH4 patterns, which show spikes with similar tim-
ing at nearly all of the same stations. For the southernmost
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Figure 4. Daily aggregated CO2 readings for 1 July 2018–1 July 2019 (blue). The background signal derived using the CCGCRV harmonic
+ trend curve is shown in black. The gray envelope represents the ±2σ range of the 30 d smoothed cycle about the background signal, and
the purple curve is a 30 d smoothing of the daily data. SSAs are highlighted in red. Dashed lines show the extended winter period.

sites, for which records date back prior to the winter of 2015–
2016, several simultaneous anomalies are observed, includ-
ing one in February/March 2013 (OPE, PUY), and an espe-
cially large signal excursion seen at the three French sites
(OPE, TRN and PUY) in November/December 2014. Both
of these coincide with CH4 events of comparable magnitude.

3.2 Seasonal anomalies

Figure 8 shows the 90 d extraction procedure at each of the
10 sites and is analogous to Fig. 4, except that we show the

period 1 January 2018 to 1 January 2019 as we wish to as-
sess the algorithm’s performance with regard to the timing,
intensity and extent of the 2018 drought and heat wave events
across central and northern Europe (Ramonet et al., 2020).
Figure 9 shows the anomaly patterns at the 10 sites during the
extended growing season (April–October). For reference, we
also include the average April–October standardized precipi-
tation evapotranspiration index (SPEI; Vicente-Serrano et al.,
2010) values at each site location to represent the relative in-
tensity of drought conditions throughout the summer.
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Figure 5. Daily aggregated CH4 readings for 1 July 2018–1 July 2019 (blue). The background signal derived using the CCGCRV harmonic
+ trend curve is shown in black. The gray envelope represents the ±2σ range of the 30 d smoothed cycle about the background signal, and
the purple curve is a 30 d smoothing of the daily data. SSAs are highlighted in red. Dashed lines show the extended winter period.

The CO2 patterns observed during the growing season of
2018 are consistent with the timing of terrestrial biospheric
aberrations that characterized that year’s exceptional drought
conditions. The ADA finds negative CO2 anomalies in May
2018 at all sites except for OPE and TRN. The largest of
these is at HTM, although a fairly large spike is detected at
PUY as well. This may be a product of unusually warm and
sunny early spring conditions in 2018, which contributed to
early green-up and growth across the region and led to en-
hanced net biome production (NBP) and plant CO2 uptake.
Subsequent extreme heat and dry conditions led to a lapse in

summertime productivity and reduced photosynthesis (Ra-
monet et al., 2020), which may explain the July CO2 spikes
captured at SMR, NOR, HTM and LIN. The ensuing dip in
CO2 observed at SMR, NOR and LIN in September 2018 can
plausibly be interpreted as a legacy effect of the reduced sum-
mertime productivity; drought stress likely led to decreased
litter availability in the fall and hence lower-than-normal de-
composition rates and total ecosystem respiration (Bastos et
al., 2020).

Several other multi-site anomalies are captured at the three
French sites in the summers of 2012–2015, though the lack
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Figure 6. Positive (red) and negative (blue) SSAs in the complete CO2 records of each site. The anomaly strength refers to the difference
between the 30 d LOESS curve and the boundary of the ±2σ30 envelope.

Figure 7. Positive (red) and negative (blue) SSAs in the complete CH4 records of each site.
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Figure 8. Daily aggregated CO2 readings for 1 January 2018–1 January 2019 (blue). The background signal derived using the CCGCRV
harmonic + trend curve is shown in black. The gray envelope represents the ±2σ range of the 90 d smoothed cycle about the background
signal, and the purple curve is a 90 d smoothing of the daily data. Anomalous periods are highlighted in red. Dashed lines delineate the
growing season (April–October).

of recordings at the other sites makes it unclear whether
these represent smaller-scale meteorological occurrences or
broader regional patterns. We note, however, that the large
positive spike seen at OPE and TRN in October 2015 fol-
lowed an intense summer dry spell that year (Erdman, 2015).
This could plausibly have triggered early senescence onset
and reduced photosynthetic activity in the fall. Likewise, an
unusually wet summer in France in 2014 might have led to
increased ecosystem productivity in the fall, resulting in the
negative spike seen simultaneously at OPE, TRN and PUY

in that year. We note also that in general, at OPE and TRN,
anomalous enhanced maximum CO2 uptake (indicated by
negative spikes in early to mid-summer) appears to correlate
with higher SPEI values (wetter conditions).

Worth noting is that although some summertime anoma-
lies detected at the 90 d bandwidth correlate with known peri-
ods of exceptional enhancement or suppression of biospheric
productivity, we have not attempted to establish a causal link
between the two here. This would require a detailed quantifi-
cation of the direct impacts of atmospheric transport. In the
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Figure 9. Positive (red) and negative (blue) 90 d seasonal CO2 anomalies. April–October average SPEI values are indicated by the dashed
gray lines. The gray bar on the right end of the plots indicates the standard deviation of summer SPEI values from 1999–2020.

summer of 2018, for example, the positive CO2 anomaly we
observe across several sites agrees well with estimated re-
ductions in continent-wide photosynthesis predicted by flux
inversion studies (e.g., Ramonet et al., 2020). However, the
timing of this anomaly also corresponds with the presence
of a high-pressure blocking system which formed over the
region in June and July 2018, which may have enhanced
easterly CO2 transport through persistent anticyclone forma-
tion (Rösner et al., 2019). The extent to which this may have
been the case is not examined in detail. Similar spikes, al-
luded to above, which appear to track known meteorologi-
cal events of exceptional duration and/or intensity likewise
cannot be said to exclusively reflect NPP irregularities with-
out the additional implementation of back-trajectory or wind
sector analyses. Such an analysis is outside the scope of this
report, which tends more toward a technical description of
our algorithm and its potential applications than a detailed
climatological study.

4 Discussion

Several potential challenges may arise in the technical ap-
plication of the ADA. These include the presence of large
data gaps in time series which could arise from instrument
malfunctions or other technical issues. CCGCRV is ill-suited
to handle such gaps (Pickers and Manning, 2015), mean-

ing missing data points must be artificially imputed using a
structural modeling function or linearly interpolated. We opt
for the latter by applying the method of Moritz and Bartz-
Beielstein (2017), which is sufficient for small data gaps but
generally impractical for large ones (∼ 1 month), where sim-
ple linear interpolation can potentially result in erroneous
anomaly selection. This appears to be the case, for example,
in late October 2018 at GAT, where the algorithm detects
negative anomalies in both trace species coinciding with the
start of a month-long gap in the daily readings (Figs. 4 and
5). Significant data gaps such as this should thus be identi-
fied before performing the linear interpolation and applying
the anomaly extraction so that any quantification of the sig-
nal during these periods is regarded with caution. One poten-
tial workaround is to interpolate data gaps using the values
of the multi-year average detrended seasonal cycle at a site.
This has not been attempted here since it would require an a
priori interpolation of data gaps, i.e., via a linear interpola-
tion, followed by an a posteriori re-interpolation of the same
gaps, followed by a secondary application of the CCGCRV
fitting procedure. It is unclear whether any reduction in gap-
related false positive detection, which appears to be quite rare
overall, justifies such a trade-off in efficiency.

The reliability of the results may also be strongly influ-
enced by the range of available data. Sites with longer histor-
ical records will have a larger residual dataset to draw from,
allowing for more precision when extracting the mean annual
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cycle and resultant ±2σ envelope, while sites with shorter
records may produce less precise results. The potential draw-
backs of this are twofold; (1) very slight anomalies might
tend to be obscured at sites with a limited number (∼ 3–
4 years) of relatively capricious measurements, and (2) low-
amplitude localized fluctuations might be detected at sites
where the full range of expected seasonal variability is under-
estimated by the ±2σ envelope, or the background curve is
an imprecise fit to the true seasonal cycle. Anomaly patterns
at sites with shorter records should thus be regarded with cau-
tion and cross-validated with patterns from other nearby sites
if possible. In the future, as longer historical records become
available at a greater number of ICOS stations, a standard-
ized setting for the record length used to estimate the back-
ground (e.g., 10 years) may be adopted.

Furthermore, the method may have limited applicability at
more isolated sites that have no clear analog within the ICOS
network. Evaluation of anomalies through cross-validation
is difficult if a site has relatively few nearby sister stations
which can reasonably be expected to sample from similar air
masses most of the time. This drawback is apparent when
considering the results at PUY and JFJ, both background
sites which sample frequently from well-mixed air above the
planetary boundary layer (Asmi et al., 2011; Herrmann et
al., 2015). At PUY, for example, planetary boundary layer
(PBL) height analyses reveal that the station samples from
the free troposphere more than 70 % of the time and up to
81 % in the winter (Lopez et al., 2015). With such infrequent
sampling of surface air, air parcels most likely to contain the
carbon signatures of bellwether biospheric events (such as
droughts and their legacy effects) or shorter-term anomalies
linked to localized contaminant plumes or sudden changes
in atmospheric transport patterns may go undetected. At JFJ,
PBL air is sampled only intermittently when conditions fa-
vor mountain venting or advection (Zellweger et al., 2003;
Griffiths et al., 2014), meaning short-duration anomalies may
merely reflect the prevalence of such localized phenomena
rather than broader atmospheric transport patterns. In the fu-
ture, this limitation will become less important as the ICOS
Atmosphere network continues to grow in size; 26 stations
across Europe currently possess the ICOS label, and another
dozen or so are set to join soon.

The occasional selection of localized fluctuations is an ad-
ditional concern. In some cases, low-amplitude spikes clas-
sified as anomalies at a particular station might not truly rep-
resent significant regional-scale excursions from the back-
ground signal. This implies the need for station-specific pro-
tocols to classify anomalies based on duration and magni-
tude, which may require cross-validation using multiple sta-
tion readings or manual inspection by principal investiga-
tors. The similarity in the patterns at the six northernmost
sites, for example, offers a means of validation for the de-
tection of SSAs; since true synoptic-scale anomalies should
produce a signal over a broad swath of the continent, those
anomalies observed only at certain sites can reasonably be

assumed to indicate localized events. Note, for example, the
very slight positive anomaly in December 2016 seen only at
GAT (Fig. 6).

In other cases, signal excursions might register as anoma-
lies at certain sites but not others. In such cases, users may
determine that these events are noteworthy enough that they
should be classified as anomalies more broadly. The recourse
then is a site-specific refinement of the selection criteria or
tuning of the algorithmic parameters. For example, although
we use a bandwidth of 30 d for SSA detection, this choice
may not be the most appropriate in all cases. Different sta-
tions have different ambient signal variability ranges de-
pending on their geographical setting and proximity to emis-
sion sources; those with higher overall variability (and hence
wider±2σ ranges) might record too few SSAs if applying an
excessively wide smoothing span as peaks in the smoothed
signal would be dampened sufficiently to be contained within
the envelope. Users may thus find a bandwidth of, for exam-
ple, 15–25 d to produce more informative results at some lo-
cations. Likewise, sites with lower overall variability might
tend to record too many SSAs when using a bandwidth that
is too short. By definition, the envelope width also affects the
anomaly selection. Note, for example, that the 2018 drought
pattern typified at the six northernmost sites does not appear
at OPE or TRN in Fig. 9. A closer examination of Fig. 8
reveals that while measurements at these two sites during,
for example, May 2018 were below the mean annual cycle,
no anomalous springtime CO2 dip was registered since the
smooth curves at OPE and TRN were still contained within
the ±2σ envelope bounds. As mentioned, the specification
of a ±2σ threshold stems from our desire to avoid exces-
sive selection of low-amplitude, site-specific signal peaks.
However, this width might mask noteworthy seasonal pat-
terns at certain sites with greater year-round variability, mak-
ing cross-examination all the more critical.

Uncertainties can also arise in the interpretation of the
results. For example, the distinction we make between
synoptic-scale and seasonal anomalies is primarily based
on the length of observed signal spikes. Normally, SSAs
which persist from 1–2 d to several weeks are presumed to
be linked to prevailing wind conditions at a given site and
hence changes in the source regions of sampled air parcels,
e.g., from relatively clean North Atlantic air to continental-
sourced air parcels bearing the signatures of terrestrial emis-
sions. However, in some cases, anomalies deemed to be sea-
sonal in length may simply represent the frequent occurrence
or unusual persistence of synoptic-scale atmospheric trans-
port patterns. For example, as alluded to previously, the ex-
treme heat waves in northern and central Europe throughout
much of June and July 2018 were associated with the persis-
tence of a high-pressure blocking system which formed over
the region. Although synoptic in size, this pressure anomaly
– combined with high temperatures – had resounding ef-
fects on European forests and resulted in subsequent CO2
anomalies in the fall of 2018. It is thus more appropriately
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considered to be part of a broader seasonal anomaly. The
implication is that in some cases, “seasonal” anomalies are
rather patterns which consist of a series of shorter, related
signal irregularities. These irregularities will often be visible
at shorter bandwidths and could be directly linked to meteo-
rological events. Summertime anomalies should thus be con-
sidered in the wider context of terrestrial ecosystem produc-
tion, indicators of which may lag well behind the occurrence
of exceptional transport episodes.

5 Conclusions

In general, we find that the algorithm captures well the sig-
nature effects of unusually strong or persistent atmospheric
transport regimes in the wintertime. This interpretation is re-
inforced by the fact that the CO2 and CH4 anomaly patterns
during the extended winter season are strikingly similar for
the 30 d implementation of the methodology. The ADA also
shows promising potential with regard to detecting the im-
prints of regional and continent-wide extremes in NBP and
other ecosystem indicators, specifically the distinctive mark-
ings of the 2018 European drought, on which we have placed
particular emphasis. An analysis of the effects of summer-
time atmospheric transport is required to more definitively
score the method’s capacity to correctly identify exceptional
biospheric episodes.

The robustness of the results is reliant on cross-validation
of anomaly detection across multiple sites. However, we note
that anomalies of sufficient size – e.g., ∼ 3 ppm CO2 greater
than our ±2σ envelope boundary when using a 30 d band-
width or ∼ 0.5 ppm CO2 when using a 90 d bandwidth – will
usually register simultaneously at multiple sites within the
same region and seem generally unlikely to stem from lo-
calized contamination. The method also has a low computa-
tional cost, and the process of including additional sites in an
analysis is relatively straightforward. As new NRT (level 1)
GHG data are uploaded to the ICOS CP, users have only
to concatenate these to existing datasets and reinitiate the
method beginning with the steps outlined in Sect. 2.3. A fully
automated Python implementation of the code is available
online in which L2 and L1 data for a given station are ex-
tracted directly from the ICOS CP and concatenated to form
a continuous multi-year time series for all dates up to the
present. Users also have the option to extract longer histor-
ical records than those available through the ICOS CP and
preprocess these themselves before running the code. The
current default implementation is to produce time series plots
in the style of Figs. 6, 7 and 9.

The ability to detect in NRT the occurrence of non-
background signal events at multiple timescales is central
to an improved understanding of GHG variability and re-
gional carbon cycling processes at multiple timescales, and
the ADA represents an important step toward this end. Even-
tually, our aim is to make results available online so that sta-

tion managers and other end users can be alerted in NRT
when anomalous signal events occur, i.e., through the auto-
mated generation of data files and time series plots to display
on the sites’ respective panel board pages.

Code availability. The ADA is intended to be open-source, and
the R code is currently accessible via a GitHub repository page
(https://github.com/hellonskis/ICOS_ATC_anomaly_detection)
(DOI: https://doi.org/10.5281/zenodo.4639780, Resovsky, 2021a).
Python code is available internally via the ICOS Jupyter hub at
https://jupyter3.icos-cp.eu/ (last access: 16 April 2021) and is
available upon request. An open-source version of the Jupyter code
is also available online at https://doi.org/10.5281/zenodo.5166711
(Resovsky, 2021b).

Data availability. The ADA is developed at the ICOS ATC (LSCE)
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NRT (level 1) measurements. Level 2 data are available online
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