7 research outputs found

    ER membrane phospholipids and surface tension control cellular lipid droplet formation

    Get PDF
    Cells convert excess energy into neutral lipids that are made in the endoplasmic reticulum (ER) bilayer. The lipids are then packaged into spherical or budded lipid droplets (LDs) covered by a phospholipid monolayer containing proteins. LDs play a key role in cellular energy metabolism and homeostasis. A key unanswered question in the life of LDs is how they bud off from the ER. Here, we tackle this question by studying the budding of artificial LDs from model membranes. We find that the bilayer phospholipid composition and surface tension are key parameters of LD budding. Phospholipids have differential LD budding aptitudes, and those inducing budding decrease the bilayer tension. We observe that decreasing tension favors the egress of neutral lipids from the bilayer and LD budding. In cells, budding conditions favor the formation of small LDs. Our discovery reveals the importance of altering ER physical chemistry for controlled cellular LD formation

    Adhesion and phagocytosis of functionalized emulsion droplets

    No full text
    La phagocytose par les macrophages est un processus biologique essentiel au systĂšme immunitaire et joue un rĂŽle clĂ© dans le maintien de l’homĂ©ostasie cellulaire. Les cibles Ă  Ă©liminer varient en terme de tailles, des bactĂ©ries (”m) aux cellules cancĂ©reuses ou senescentes (10 – 20 ”m). La plupart des Ă©tudes quantitatives sur la phagocytose reposent sur l'utilisation de microparticules de polymĂšre rigides en tant que cibles modĂšles pour la comprĂ©hension des paramĂštres qui rĂ©gissent ce processus. Cependant, ces particules ne rendent pas compte de la mobilitĂ© latĂ©rale des ligands Ă  leur surface malgrĂ© la pertinence de ce paramĂštre dans le contexte immunologique. Cette Ă©tude a pour but de synthĂ©tiser un matĂ©riau biomimĂ©tique qui constitue un nouveau systĂšme modĂšle pour l’étude de la phagocytose. Il s’agit de gouttes d’émulsions monodisperses fonctionnalisĂ©es avec des IgGs libres de diffuser sur toute la surface. Dans le cadre de cette thĂšse, nous avons obtenu diffĂ©rentes densitĂ©s contrĂŽlĂ©es de fonctionnalisation, caractĂ©risĂ©es de façon quantitative. Ainsi, il nous a Ă©tĂ© possible de dĂ©terminer une densitĂ© minimale d’IgGs nĂ©cessaire Ă  induire une internalisation efficace des gouttes. Pour des densitĂ©s supĂ©rieures d’IgGs, ces gouttes sont efficacement et spĂ©cifiquement internalisĂ©es par phagocytose induite par les rĂ©cepteurs FcR in vitro. Nous avons plus prĂ©cisĂ©ment cherchĂ© Ă  approfondir la comprĂ©hension de certains aspects mĂ©caniques. Nous montrons que, contrairement Ă  des billes de polymĂšres solides, l’internalisation des gouttes est efficace mĂȘme pour de faibles densitĂ©s d’IgGs. La phagocytose s’accompagne, pendant la phase d’adhĂ©sion Ă  la surface du macrophage, d’une mobilitĂ© latĂ©rale des ligands en zone de contact. Il apparaĂźt donc que la mobilitĂ© latĂ©rale des protĂ©ines Ă  l'interface d'une cible amĂ©liore considĂ©rablement sa phagocytose par les macrophages. Ainsi, ces gouttes permettrons d’aborder de nouvelles questions biologiques pour approfondir certaines mĂ©canismes molĂ©culaires et/ou mĂ©caniques.Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. The aim of this study is to synthesize a biomimetic material that constitutes a new model system for the study of phagocytosis. We designed monodisperse, lateraly mobile IgG-coated emulsion droplets, with different controlled densities of IgGs, that are efficiently and specifically internalized by macrophages through in-vitro FcÎłR-mediated phagocytosis. The excellent control of the opsonization density allowed us to measure the minimal IgGs density required to induce an efficient internalization. We also attempted to deepen the understanding of certain mechanical aspects. We show that, contrary to solid polymeric beads, droplet uptake is high even for low IgG densities and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake. Thus, emulsion droplets constitute a new interesting target to investigate different biological issues and understand molecular and/or mechanical mechansims

    Adhésion et phagocytose de gouttes d'émulsions fonctionnalisées

    No full text
    Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. The aim of this study is to synthesize a biomimetic material that constitutes a new model system for the study of phagocytosis. We designed monodisperse, lateraly mobile IgG-coated emulsion droplets, with different controlled densities of IgGs, that are efficiently and specifically internalized by macrophages through in-vitro FcÎłR-mediated phagocytosis. The excellent control of the opsonization density allowed us to measure the minimal IgGs density required to induce an efficient internalization. We also attempted to deepen the understanding of certain mechanical aspects. We show that, contrary to solid polymeric beads, droplet uptake is high even for low IgG densities and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake. Thus, emulsion droplets constitute a new interesting target to investigate different biological issues and understand molecular and/or mechanical mechansims.La phagocytose par les macrophages est un processus biologique essentiel au systĂšme immunitaire et joue un rĂŽle clĂ© dans le maintien de l’homĂ©ostasie cellulaire. Les cibles Ă  Ă©liminer varient en terme de tailles, des bactĂ©ries (”m) aux cellules cancĂ©reuses ou senescentes (10 – 20 ”m). La plupart des Ă©tudes quantitatives sur la phagocytose reposent sur l'utilisation de microparticules de polymĂšre rigides en tant que cibles modĂšles pour la comprĂ©hension des paramĂštres qui rĂ©gissent ce processus. Cependant, ces particules ne rendent pas compte de la mobilitĂ© latĂ©rale des ligands Ă  leur surface malgrĂ© la pertinence de ce paramĂštre dans le contexte immunologique. Cette Ă©tude a pour but de synthĂ©tiser un matĂ©riau biomimĂ©tique qui constitue un nouveau systĂšme modĂšle pour l’étude de la phagocytose. Il s’agit de gouttes d’émulsions monodisperses fonctionnalisĂ©es avec des IgGs libres de diffuser sur toute la surface. Dans le cadre de cette thĂšse, nous avons obtenu diffĂ©rentes densitĂ©s contrĂŽlĂ©es de fonctionnalisation, caractĂ©risĂ©es de façon quantitative. Ainsi, il nous a Ă©tĂ© possible de dĂ©terminer une densitĂ© minimale d’IgGs nĂ©cessaire Ă  induire une internalisation efficace des gouttes. Pour des densitĂ©s supĂ©rieures d’IgGs, ces gouttes sont efficacement et spĂ©cifiquement internalisĂ©es par phagocytose induite par les rĂ©cepteurs FcR in vitro. Nous avons plus prĂ©cisĂ©ment cherchĂ© Ă  approfondir la comprĂ©hension de certains aspects mĂ©caniques. Nous montrons que, contrairement Ă  des billes de polymĂšres solides, l’internalisation des gouttes est efficace mĂȘme pour de faibles densitĂ©s d’IgGs. La phagocytose s’accompagne, pendant la phase d’adhĂ©sion Ă  la surface du macrophage, d’une mobilitĂ© latĂ©rale des ligands en zone de contact. Il apparaĂźt donc que la mobilitĂ© latĂ©rale des protĂ©ines Ă  l'interface d'une cible amĂ©liore considĂ©rablement sa phagocytose par les macrophages. Ainsi, ces gouttes permettrons d’aborder de nouvelles questions biologiques pour approfondir certaines mĂ©canismes molĂ©culaires et/ou mĂ©caniques

    Phagocytosis of immunoglobulin-coated emulsion droplets

    No full text
    International audiencePhagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. Herein we designed monodisperse, IgG-coated emulsion droplets that are efficiently and specifically internalized by macrophages through in-vitro FcÎłR-mediated phagocytosis. We show that, contrary to solid polymeric beads, droplet uptake is efficient even for low IgG densities, and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake

    Dual binding motifs underpin the hierarchical association of perilipins1-3 with lipid droplets.

    No full text
    Lipid droplets (LDs) in all eukaryotic cells are coated with at least one of the perilipin family of proteins. They all regulate key intracellular lipases but do so to significantly different extents. Where more than one perilipin is expressed in a cell, they associate with LDs in a hierarchical manner. In vivo, this means that lipid flux control in a particular cell or tissue type is heavily influenced by the specific perilipins present on its LDs. Despite their early discovery, exactly how perilipins target LDs and why they displace each other in a ‘hierarchical’ manner remains unclear. They all share an amino-terminal 11-mer repeat amphipathic region suggested to be involved in LD targeting. Here, we show that in vivo this domain functions as a primary highly reversible LD targeting motif in perilipins1-3 and, in vitro, we document reversible and competitive binding between a wildtype purified perilipin1 11-mer repeat peptide and a mutant with reduced binding affinity to both ‘naked’ and phospholipid coated oil-water interfaces. We also present data suggesting that a second carboxy-terminal 4-helix bundle domain stabilizes LD binding in perilipin1 more effectively than in perilipin2, whereas in perilipin3 it weakens binding. These findings suggest that dual amphipathic helical regions mediat

    Dual binding motifs underpin the hierarchical association of perilipins1-3 with lipid droplets.

    No full text
    Lipid droplets (LDs) in all eukaryotic cells are coated with at least one of the perilipin (Plin) family of proteins. They all regulate key intracellular lipases but do so to significantly different extents. Where more than one Plin is expressed in a cell, they associate with LDs in a hierarchical manner. In vivo, this means that lipid flux control in a particular cell or tissue type is heavily influenced by the specific Plins present on its LDs. Despite their early discovery, exactly how Plins target LDs and why they displace each other in a "hierarchical" manner remains unclear. They all share an amino-terminal 11-mer repeat (11mr) amphipathic region suggested to be involved in LD targeting. Here, we show that, in vivo, this domain functions as a primary highly reversible LD targeting motif in Plin1-3, and, in vitro, we document reversible and competitive binding between a wild-type purified Plin1 11mr peptide and a mutant with reduced binding affinity to both "naked" and phospholipid-coated oil-water interfaces. We also present data suggesting that a second carboxy-terminal 4-helix bundle domain stabilizes LD binding in Plin1 more effectively than in Plin2, whereas it weakens binding in Plin3. These findings suggest that dual amphipathic helical regions mediate LD targeting and underpin the hierarchical binding of Plin1-3 to LDs
    corecore