87 research outputs found

    Charge-induced conformational changes of dendrimers

    Full text link
    We study the effect of chargeable monomers on the conformation of dendrimers of low generation by computer simulations, employing bare Coulomb interactions. The presence of the latter leads to an increase in size of the dendrimer due to a combined effect of electrostatic repulsion and the presence of counterions within the dendrimer, and also enhances a shell-like structure for the monomers of different generations. In the resulting structures the bond-length between monomers, especially near the center, will increase to facilitate a more effective usage of space in the outer-regions of the dendrimer.Comment: 7 pages, 12 figure

    Bulk and Interfacial Shear Thinning of Immiscible Polymers

    Full text link
    Nonequilibrium molecular dynamics simulations are used to study the shear thinning behavior of immiscible symmetric polymer blends. The phase separated polymers are subjected to a simple shear flow imposed by moving a wall parallel to the fluid-fluid interface. The viscosity begins to shear thin at much lower rates in the bulk than at the interface. The entire shear rate dependence of the interfacial viscosity is consistent with a shorter effective chain length ss^* that also describes the width of the interface. This ss^* is independent of chain length NN and is a function only of the degree of immiscibility of the two polymers. Changes in polymer conformation are studied as a function of position and shear rate.Shear thinning correlates more closely with a decrease in the component of the radius of gyration along the velocity gradient than with elongation along the flow. At the interface, this contraction of chains is independent of NN and consistent with the bulk behavior for chains of length ss^*. The distribution of conformational changes along chains is also studied. Central regions begin to stretch at a shear rate that decreases with increasing NN, while shear induced changes at the ends of chains are independent of NN.Comment: 8 pages, 8 figure

    Glass Transition Behavior of Polymer Films of Nanoscopic Dimensions

    Full text link
    Glass transition behavior of nanoscopically thin polymer films is investigated by means of molecular dynamics simulations. A thin polymer film that is composed of bead-spring model chains and supported on an idealized, fcc lattice substrate surface is studied in this work.Comment: in review, macromolecule

    Аллопластические и имплантационные материалы для костной пластики: обзор литературы

    Get PDF
    Bone reconstruction aft er trauma, infection, tumour or congenital genetic disorder is an important subject of modern medicine usually relying on bone graft ing materials. Autologous bone or autograft is still considered the “gold standard” most eff ective in bone defect reconstruction and osseous regeneration. Having the advantages of autograft ing, a series of issues remain related to a limited donor material, painful graft taking and the risk of putative complications (nonunions, graft rejection, infection, iatrogenic fractures, post-microsurgery arteriovenous shunt thrombosis, etc.). Th erefore, improved biomaterials are demanded to adequately meet the autograft criteria. Choosing optimal graft materials becomes relevant, aside to the rationale of selecting new surgical techniques. Th e osteoconductive and osteoinductive property evaluation in modern osteoplastic materials comprises a research avenue into optimal graft development for osseous correction in maxillofacial surgery, neurosurgery, traumatology and orthopaedics. Such biomaterials can be combined with alloplastic graft s to attain the required properties of osteoconduction, osteoinduction and osteogenesis. Th is analytic literature review focuses on current state-of-the-art in alloplastic graft ing that, in our opinion, grounds the progress of auto- and allograft innovative development.Восстановление костных дефектов, вызванных травмой, инфекциями, опухолями или врожденными генетическими нарушениями, является важной проблемой в  современной медицине, которая обычно требует использования материалов для костной пластики. При этом аутологичная кость, или аутотрансплантат, попрежнему считается «золотым стандартом» и  наиболее эффективным методом для восстановления костных дефектов и регенерации костной ткани. Однако при всех преимуществах костной аутотрансплантации имеется ряд проблем, связанных с ограниченным объемом донорского материала, болями в зоне забора имплантатов и опасностью возникновения возможных осложнений (несращений, отторжений трансплантатов, инфекции, ятрогенных переломов, тромбозов артериовенозных шунтов при применении микрохирургической техники и т. д.). Поэтому имеется необходимость в разработке улучшенных биоматериалов, которые бы максимально соответствовали характеристикам аутотрансплантатов. В связи с этим наряду с рациональным выбором новых хирургических методик актуальным становится выбор оптимальных имплантационных материалов. Оценка остеокондуктивных и остеоиндуктивных свойств современных остеопластических материалов является одним из направлений исследований по поиску оптимальных имплантов для лечения пациентов с костными дефектами в челюстно-лицевой хирургии, нейрохирургии и травматологии и ортопедии. При этом данные биоматериалы можно комбинировать с аллопластическим материалом, в результате чего может быть разработан имплант, который удовлетворяет требованиям по остеокондукции, остеоиндукции и остеогенезу. Аналитический обзор доступной литературы посвящен современному состоянию проблемы применения аллопластических имплантационных материалов, что, по нашему мнению, может послужить основой для разработки инновационных заменителей костных ауто- и аллотрансплантатов

    The HITRAN2016 molecular spectroscopic database

    Get PDF
    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided

    The 2015 edition of the GEISA spectroscopic database

    Get PDF
    The GEISA database (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) has been developed and maintained by the ARA/ABC(t) group at LMD since 1974. GEISA is constantly evolving, taking into account the best available spectroscopic data. This paper presents the 2015 release of GEISA (GEISA-2015), which updates the last edition of 2011 and celebrates the 40th anniversary of the database. Significant updates and additions have been implemented in the three following independent databases of GEISA. The “line parameters database” contains 52 molecular species (118 isotopologues) and transitions in the spectral range from 10−6 to 35,877.031 cm−1, representing 5,067,351 entries, against 3,794,297 in GEISA-2011. Among the previously existing molecules, 20 molecular species have been updated. A new molecule (SO3) has been added. HDO, isotopologue of H2O, is now identified as an independent molecular species. Seven new isotopologues have been added to the GEISA-2015 database. The “cross section sub-database” has been enriched by the addition of 43 new molecular species in its infrared part, 4 molecules (ethane, propane, acetone, acetonitrile) are also updated; they represent 3% of the update. A new section is added, in the near-infrared spectral region, involving 7 molecular species: CH3CN, CH3I, CH3O2, H2CO, HO2, HONO, NH3. The “microphysical and optical properties of atmospheric aerosols sub-database” has been updated for the first time since 2003. It contains more than 40 species originating from NCAR and 20 from the ARIA archive of Oxford University. As for the previous versions, this new release of GEISA and associated management software facilities are implemented and freely accessible on the AERIS/ESPRI atmospheric chemistry data center website

    The HITRAN2020 Molecular Spectroscopic Database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure
    corecore