217 research outputs found

    A role for SUMO modification in transcriptional repression and activation

    Get PDF
    Since the discovery of the SUMO (small ubiquitin-like modifier) family of proteins just over a decade ago, a plethora of substrates have been uncovered including many regulators of transcription. Conjugation of SUMO to target proteins has generally been considered as a repressive modification. However, there are now a growing number of examples where sumoylation has been shown to activate transcription. Here we discuss whether there is something intrinsically repressive about sumoylation, or if the outcome of this modification in the context of transcription will prove to be largely substrate-dependent. We highlight some of the technical challenges that will be faced by attempting to answer this question

    Biochemical analysis of MBD1

    Get PDF
    Methylation of cytosines within CpG dinucleotides is a feature of vertebrate DNA. The precise role of DNA methylation is unknown to date, although it has been implicated in several processes relating to transcriptional regulation. One approach to study DNA methylation is the characterization of proteins that bind specifically to methylated DNA. One such family of proteins is the methyl-CpG binding domain (MBD) containing family and MBD1 is a member of this family. MBD1 is implicated in transcriptional repression and various mechanisms by which it might bring about gene silencing have been proposed. These are mainly based on studies reporting interactions between MBD1 and various proteins that regulate chromatin structure. Also MBD1 function can be modified by PIAS proteins, which stimulate its conjugation to SUMO (small ubiquitinlike modifier).The original aim of this work was to address two questions about MBD1: (1) Does MBD1 form part of a stable complex with other factors, and if so, what are the identities of the other components? Purification of MBD1 revealed the presence of no stably bound interacting proteins. However, some evidence indicates MBD1 may interact with itself and form dimers, a finding which impacts on many aspects of the function of MBD1. Also a proteomics screen for transient interaction partners identified candidate binding partners for MBD1 and the related protein MeCP2, which may throw light on the function of these proteins. (2) Are there any activities which regulate MBD1 function by the removal of SUMO from this protein? No activities capable of removing SUMO from native MBD1 were found but it was demonstrated that this modification leads to the destabilization of MBD1 in vitro. The relevance of this finding in vivo is yet to be determined

    Sequence specific DNA binding by AT-hook motifs in MeCP2

    Get PDF
    MeCP2 is a chromatin‐associated protein that is mutated in Rett syndrome. Its methyl‐CpG‐binding domain interacts with DNA containing methylated cytosine, but other modes of recruitment to the genome have also been proposed. Here, we use in vitro and in vivo assays to investigate the DNA binding specificity of two AT‐hook motifs in MeCP2. One exhibits robust sequence‐specific DNA binding, whereas the other is a much weaker AT‐hook. Our data indicate that these motifs are secondary contributors to DNA binding by MeCP2, and this view is supported by the absence of disease‐causing missense mutations at these sites

    Reduction of dimensionality in a di usion search process and kinetics of gene expression

    Get PDF
    Abstract In order to activate a gene in a DNA molecule a speciÿc protein (transcription factor) has to bind to the promoter of the gene. We formulate and partially answer the following question: how much time does a transcription factor, which activates a given gene, need in order to ÿnd this gene inside the nucleus of a cell? The estimate based on the simplest model of di usion gives a very long time of days. We discuss various mechanisms by which the time can be reduced to seconds, in particular, the reduction of dimensionality, in which di usion takes place, from three-dimensional space to two-dimensional space. The potential needed to keep the di using particle in 2D (i.e, at the surface of size L 2 in a volume of size L 3 ) should scale as U ∼ kBT ln L. For aL = 1 m and a target size a = 10 A we ÿnd U = 8kBT, i.e., it is a potential strength of the order of the strength of ionic interactions in water

    SENP1 participates in the dynamic regulation of Elk-1 SUMOylation

    Get PDF
    The modification of proteins with SUMO (small ubiquitin-related modifier) plays an important role in determining their functional properties. Importantly though, SUMOylation is a highly dynamic process enabling transient responses to be elicited. This dynamism is controlled by two competing conjugating and deconjugating activities. The latter activity is mediated by the SENP [SUMO1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidase] family of SUMO-specific proteases. The transcription factor Elk-1 [ETS (E twenty-six)-like 1] undergoes rapid de-SUMOylation following cellular stimulation with growth factors, and this contributes to its conversion from a SUMO-dependent repressor into a potent transcriptional activator. In the present study we demonstrate an important role for SENP1 in the de-SUMOylation of Elk-1, and therefore an integral role in determining the Elk-1-dependent transcriptional programme. Among the SENPs, Elk-1 preferentially forms a complex with SENP1. This preferential binding is reflected by the higher efficiency of SENP1 in promoting Elk-1 transactivation. Moreover, depletion of SENP1 causes a reciprocal effect and reduces the transactivation properties of Elk-1. Partial redundancy of function with SENP2 is revealed by combinatorial knockdown studies. Importantly, depletion of SENP1 also reduces the activation of the Elk-1 target gene c-FOS. Taken together, these results therefore reveal an important role for SENP1 in the regulation of Elk-1-mediated gene expression in response to mitogenic signalling cues

    Neuronal non-CG methylation is an essential target for MeCP2 function

    Get PDF
    DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype
    corecore