10,035 research outputs found

    Electron Spin Resonance at the Level of 10000 Spins Using Low Impedance Superconducting Resonators

    Full text link
    We report on electron spin resonance (ESR) measurements of phosphorus donors localized in a 200 square micron area below the inductive wire of a lumped element superconducting resonator. By combining quantum limited parametric amplification with a low impedance microwave resonator design we are able to detect around 20000 spins with a signal-to-noise ratio (SNR) of 1 in a single shot. The 150 Hz coupling strength between the resonator field and individual spins is significantly larger than the 1 - 10 Hz coupling rates obtained with typical coplanar waveguide resonator designs. Due to the larger coupling rate, we find that spin relaxation is dominated by radiative decay into the resonator and dependent upon the spin-resonator detuning, as predicted by Purcell

    Onsager's Wien Effect on a Lattice

    Full text link
    The Second Wien Effect describes the non-linear, non-equilibrium response of a weak electrolyte in moderate to high electric fields. Onsager's 1934 electrodiffusion theory along with various extensions has been invoked for systems and phenomena as diverse as solar cells, surfactant solutions, water splitting reactions, dielectric liquids, electrohydrodynamic flow, water and ice physics, electrical double layers, non-Ohmic conduction in semiconductors and oxide glasses, biochemical nerve response and magnetic monopoles in spin ice. In view of this technological importance and the experimental ubiquity of such phenomena, it is surprising that Onsager's Wien effect has never been studied by numerical simulation. Here we present simulations of a lattice Coulomb gas, treating the widely applicable case of a double equilibrium for free charge generation. We obtain detailed characterisation of the Wien effect and confirm the accuracy of the analytical theories as regards the field evolution of the free charge density and correlations. We also demonstrate that simulations can uncover further corrections, such as how the field-dependent conductivity may be influenced by details of microscopic dynamics. We conclude that lattice simulation offers a powerful means by which to investigate system-specific corrections to the Onsager theory, and thus constitutes a valuable tool for detailed theoretical studies of the numerous practical applications of the Second Wien Effect.Comment: Main: 12 pages, 4 figures. Supplementary Information: 7 page

    Low-frequency noise reduction of spacecraft structures

    Get PDF
    Low frequency noise reduction of spacecraft structure

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    Fatigue risk assessment of a Helicopter Emergency Medical Service crew working a 24/7 shift pattern:results of a prospective service evaluation

    Get PDF
    Background: The work of Helicopter Emergency Medical Services (HEMS) teams crosses the boundaries of several high-risk occupations including medicine, aviation, and transport. Working conditions can be challenging and operational demands requires a 24-h rota, resulting in disruption of the normal circadian rhythm. HEMS crews are therefore prone to both mental and physical fatigue. As fatigue in medical providers is linked to poor cognitive performance, degradation of psychomotor skills and error, this study aimed to explore the existence of predictable patterns of crew-fatigue in a HEMS service.Methods: HEMS medical crew members working a 3-on 3-off forward rotating rota with a 5-week shift cycle were asked to do psychomotor vigilance tests (PVT) as an objective measure of fatigue. PVT testing was undertaken at the start, mid- and at the end of every shift during a full 5-week shift cycle. In addition, they were asked to score subjective tiredness with the Samn-Perelli Fatigue Scale (SPFS), and to keep a Transport Fatigue Assessment shift log, wherein they noted shift characteristics potentially related to fatigue. Primary outcome of interest was defined as the change in PVT and SPFS scores over time.Results: Mean baseline resting PVT in milliseconds at the start of the study period was 427 [390–464]. There was an overall trend towards higher PVT-scores with shift progression mean [95% CI] PVT at the start of shifts 447 [433–460]; halfway through the shift 452 [440–463]; end of the shift 459 [444–475], p = 0.10), whereas SPFS scores remained constant. Within a 5 week forward-rotating cycle, an overall trend towards a gradual increase in both average PVT (from 436 [238–454] to 460 [371–527, p = 0.68] ms;) and SPFS (from 2.9 [2.6–3.2] to 3.6 [3.1–4.0], p = 0.38) was observed, although significant interindividual variation was present. Reported SPFS scores ≥ 4 (moderate fatigue) were mainly related to workload (number of jobs) and transport mode (car-based shifts).Conclusion: An overall trend towards a decline in psychomotor vigilance and an increase in self-reported tiredness was found for HEMS crew over a 5-week shift cycle. Using a bespoke predictive fatigue tool on a day-to-day basis could increase fatigue awareness and provide a framework to which relevant mitigating options can be applied.</p

    Predicting magnetopause crossings at geosynchronous orbit during the Halloween storms

    Get PDF
    [1] In late October and early November of 2003, the Sun unleashed a powerful series of events known as the Halloween storms. The coronal mass ejections launched by the Sun produced several severe compressions of the magnetosphere that moved the magnetopause inside of geosynchronous orbit. Such events are of interest to satellite operators, and the ability to predict magnetopause crossings along a given orbit is an important space weather capability. In this paper we compare geosynchronous observations of magnetopause crossings during the Halloween storms to crossings determined from the Lyon-Fedder-Mobarry global magnetohydrodynamic simulation of the magnetosphere as well to predictions of several empirical models of the magnetopause position. We calculate basic statistical information about the predictions as well as several standard skill scores. We find that the current Lyon-Fedder-Mobarry simulation of the storm provides a slightly better prediction of the magnetopause position than the empirical models we examined for the extreme conditions present in this study. While this is not surprising, given that conditions during the Halloween storms were well outside the parameter space of the empirical models, it does point out the need for physics-based models that can predict the effects of the most extreme events that are of significant interest to users of space weather forecasts

    Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28

    Full text link
    We have performed continuous wave and pulsed electron spin resonance measurements of implanted bismuth donors in isotopically enriched silicon-28. Donors are electrically activated via thermal annealing with minimal diffusion. Damage from bismuth ion implantation is repaired during thermal annealing as evidenced by narrow spin resonance linewidths (B_pp=12uT and long spin coherence times T_2=0.7ms, at temperature T=8K). The results qualify ion implanted bismuth as a promising candidate for spin qubit integration in silicon.Comment: 4 pages, 4 figure

    Stark shift and field ionization of arsenic donors in 28^{28}Si-SOI structures

    Full text link
    We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures, and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified 28^{28}Si-SOI layers using such structures. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to ∼\sim 2 V/μ\mum to be applied across the SOI layer. Utilizing this structure we measure the Stark shift parameters of arsenic donors embedded in the 28^{28}Si SOI layer and find a contact hyperfine Stark parameter of ηa=−1.9±0.2×10−3μ\eta_a=-1.9\pm0.2\times10^{-3} \mum2^2/V2^2. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.Comment: 5 pages, 3 figure
    • …
    corecore