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1. Introduction 36 

Initial studies of renal artery sympathetic denervation as a treatment for resistant hypertension 37 

were so encouraging that they promoted investigators to launch studies to evaluate the role of 38 

this novel therapy in other conditions associated with sympathetic nervous system over 39 

activation [1-7]. For this reason, the results of the Symplicity HTN-3 trial surprised the 40 

cardiology community [8]. This trial reported that renal artery sympathetic denervation is 41 

ineffective at lowering blood pressure in patients with resistant hypertension when compared 42 

to a sham control group.  Several hypotheses have been proposed to explain these disparate 43 

results [9-12]; one possibility is that the renal sympathetic nerves were inadequately ablated, 44 

perhaps due to operator or technological factors [13]. Supporting this hypothesis, a post-hoc 45 

analysis of Symplicity HTN-3 demonstrated that those patients who had received a more 46 

comprehensive ablation procedure, i.e. a larger number of ablations and therapy to all four 47 

quadrants of each renal artery, experienced a greater reduction in blood pressure [14].  48 

 49 

Early adopters of renal denervation believed that the superior aspect of the renal artery ostium 50 

contained the greatest concentration of sympathetic nerves, and thus considered this a critical 51 

site for ablation [15]. This theory has since been dispelled by human histological data, which 52 

demonstrates that sympathetic nerves run in closer proximity to the distal rather than 53 

proximal renal artery, implying that ablation here may have a superior success rate [16]. This 54 

study also found that only 40% of renal sympathetic nerves are located within 2mm of the 55 

artery wall and it is unclear whether the first generation catheter has the capability to extend 56 

much beyond this. Newer catheters capable of creating a deeper ablation zone may target a 57 

greater proportion of sympathetic nerves and therefore be more effective [17]. 58 

 59 
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Reflecting upon these new data, future trials of renal denervation may employ a more 60 

rigorous approach, with ablations being more numerous and more distally placed, including 61 

distal to bifurcations, and targeting all four quadrants of the artery [17, 18]. Furthermore, it 62 

may be desirable to create larger ablation zones [19].  The latest second generation catheters 63 

are designed to facilitate this strategy with: 1) multiple electrode configurations that allow 64 

uniform circumferential energy delivery (Spyral™, Vessix™, EnlighHTN™ and Paradise™) 65 

[15, 20]; 2) an ability to perform ablations in arteries as narrow as 3mm in diameter 66 

(Spyral™, Vessix™), thereby enabling more distal access compared to the previous limit of 67 

4mm [21], and 3) deeper penetration into the renal adventitia (the Paradise™ system is able 68 

to create an ablation zone that extends 7-12mm from the renal artery wall) enabling 69 

attenuation of a greater proportion of the sympathetic nerves [22]. 70 

 71 

Whilst achieving adequate sympathetic nerve attenuation is clearly vital to the efficacy of the 72 

procedure, a balance must be struck with the potential risks that may be associated with an 73 

extensive ablation strategy that uses the measures outlined above [19, 23]. The purpose of 74 

this study is to explore one such risk - the potential for ‘comprehensive’ renal artery ablation 75 

to cause thermal injury to neighbouring structures. To this end, we reviewed a series of 76 

computerised tomograms (CTs) to identify those structures that lie in close proximity to the 77 

renal arteries, and which may be exposed to thermal energy using this contemporary 78 

approach. 79 

 80 

2. Methods 81 

2.1 Study Population 82 

Two experienced radiologists independently reviewed consecutive CT aortograms, obtaining 83 

a total sample size of 100 kidneys considered anatomically eligible for renal denervation. 84 
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Demographic data and relevant past medical history were collected for each patient. National 85 

Health Service (UK) Management Permission for use of anonymised patient data for research 86 

was obtained, conforming to ethical standards [24]. 87 

 88 

2.2 Renal Artery Analysis 89 

All images were acquired with a Siemens SOMATOM Definition Flash dual-source scanner, 90 

with a reconstructed slice thickness of 0.75mm [25].  Axial and coronal reconstructions were 91 

assessed for each patient thereby allowing adequate assessment of structures in both the 92 

antero-posterior and cranio-caudal axes. The arterial supply to each kidney was graded 93 

according to a modified classification [26], and the anatomic eligibility for renal denervation 94 

determined. Standard recommendations were adapted to use a renal artery diameter threshold 95 

of ≥3mm, rather than the conventional ≥4mm, thus encompassing the extended capability of 96 

some second-generation catheters. Renal arterial anatomy was categorised as follows: 97 

classically eligible (A), off-label eligible (B), or ineligible (C) (Figure 1). 98 

 99 

Only renal arteries deemed eligible for denervation (classifications A or B) were included in 100 

the study. The ‘at risk zone’ (ARZ) was defined as an area measuring 10mm (based on 101 

histology data from the Paradise™ system [22]) extending radially from the renal artery wall 102 

at any point between the ostium and the hilum, where the renal artery diameter was ≥3mm. 103 

Structures within the ARZ were documented, along with the shortest distance from the vessel 104 

wall at which these were found. In addition to this 10mm ARZ, structures within a smaller 105 

(5mm) zone were also evaluated to reflect the smaller ablation zones created by catheters 106 

with a lower maximum penetration. All measurements were rounded to the nearest mm. Any 107 

discrepancy in findings between the two observers was resolved by consensus. 108 

 109 
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2.3 Statistics 110 

Continuous variables are presented as means with standard deviations (SD). Nominal 111 

variables are presented as counts and percentages or medians with 1st and 3rd quartiles. 112 

Fisher’s exact test was used to compare categorical data. The McNemar test with the exact 113 

method was used to compare related categorical variables. All analyses were performed using 114 

SPSS (IBM version 22). 115 

 116 

3. Results 117 

Subjects had a mean age of 74.6 (SD 15.0) years and an average body mass index was 27.3 118 

(SD 5.6). 24 (48%) were male, 44 (88%) had a history of hypertension and 41 (82%) had 119 

ischaemic heart disease. 120 

 121 

Twenty-six of the 126 kidneys (63 patients) were ineligible; 18 due to renal artery stenosis, 4 122 

due to a single renal artery that was either <3mm in diameter or <20mm in length with no 123 

branch being >3mm in diameter, and 4 due to multiple ineligible renal arteries.   124 

 125 

Of the 100 eligible kidneys 73 were classically eligible for renal denervation and 27 were off-126 

label eligible; of these, 7 had a side branch measuring ≥3mm in diameter within the first 127 

20mm, 10 had multiple renal arteries each ≥3mm in diameter and ≥20mm in length prior to 128 

any bifurcation, and 10 had multiple renal arteries where at least one had a diameter ≥3mm 129 

and a length ≥20mm. 130 

 131 

In 97% of kidneys, the renal veins lie within 10mm of the renal arteries, and the inferior vena 132 

cava (IVC) is always within the ARZ of the right renal artery (Figure 2 and 3). The psoas 133 

muscles (Figure 2) and small bowel (Figure 3) are found within the ARZ in a quarter of 134 
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kidneys; however, this proportion is reduced when the smaller (5mm) zone is considered 135 

(Table 1). Neither large bowel nor renal parenchyma were found within the ARZ in any 136 

cases.  137 

 138 

The IVC and liver (Figure 4) were only encountered within the ARZ on the right, whereas the 139 

pancreas (Figure 5), adrenal gland and splenic vasculature were more commonly encountered 140 

within the ARZ on the left (Table 1). In over 50% of kidneys the renal vein and/or IVC were 141 

within 1mm of the renal artery (Table 2).  142 

 143 

Seventy-one kidneys were found to have arteries eligible for ablation before and after the first 144 

bifurcation; these are presented in Table 3. The IVC was more commonly found prior to the 145 

renal artery bifurcation whereas the psoas muscle, small bowel and liver were encountered 146 

more frequently distal to the first bifurcation (Table 3). 147 

 148 

There was no significant difference in the frequency with which structures were encountered 149 

within the ARZ when comparing classically eligible (A) to off-label eligible (B) renal 150 

arteries, and no significant difference in the frequency with which structures occurred in the 151 

ARZ for smaller diameter arteries of 3-4mm when compared with classically accepted 152 

arteries measuring ≥4mm. 153 

 154 

4. Discussion 155 

We have found that in at least one-fifth of cases the renal vein, IVC, psoas muscle or small 156 

bowel are located within 10mm of the renal artery wall and thus may inadvertently receive 157 

thermal energy during a renal denervation procedure using the latest catheters.  158 

 159 
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Manufacturers of the commercially available ablation catheters used for renal sympathetic 160 

denervation tend not to openly disclose the exact size of the ablation zones that these create; 161 

this is surprising given the large number of patients in which this procedure has been 162 

performed worldwide. A literature review found only five reports that adequately described 163 

lesion dimensions [16]. Only one of these reports was in man and describes a single patient 164 

who died from an aortic dissection several days after receiving 11 ablations with the 165 

Symplicity™ catheter [27]; on post-mortem the maximum size of the ablation zone was 166 

2mm. A study of catheter-based renal denervation in dogs using the EnligHTN™ system 167 

revealed that 90% of ablation zones did not extend beyond 3.5mm [28], and a recent study 168 

using the Symplicity™ catheter in swine found that mean distance to deepest thermal injury 169 

from the arterial lumen was 7.3mm [29]. Finally, a phantom gel model reported the mean size 170 

of ablation zones using Symplicity™ and EnligHTN™ catheters to be 3.8mm and 3.4mm 171 

respectively, although it is not possible to extrapolate the results of these studies to humans 172 

[30].  173 

 174 

The Symplicity™ catheter has been used in the majority of trials and registries to date with 175 

no reports of abdominal organ damage; this suggests that either this risk is rare and largely 176 

theoretical or it is underreported presumably as the clinical consequences of inadvertent 177 

thermal injury to the structures commonly found in the ARZ are temporary. However, several 178 

different catheter systems have since been launched, each with varying electrode 179 

configuration, energy use and biophysical properties suggesting that a class effect for neither 180 

efficacy nor safety can be assumed [15, 31]. 181 

 182 

The only available ultrasound-based system for renal denervation (Paradise™) has been 183 

shown to have a maximum penetration depth of 7-12mm in swine [22]. The development of 184 
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such powerful systems prompted us to elucidate which structures lie in the vicinity of renal 185 

arteries and thus may be affected by thermal energy.  Given our findings, that in least one-186 

fifth of eligible kidneys the renal vein, IVC, psoas muscle and small bowel are encountered 187 

within 10mm of the renal artery wall, it is interesting to note that in the animal study using 188 

the Paradise™ catheter there was evidence of small bowel necrosis and psoas muscle damage 189 

[22]. The authors of that study, based on unpublished industry data, suggested that these 190 

effects are less likely in humans due to anatomical differences between pigs and man. 191 

However, back or abdominal pain, the most commonly reported symptoms of psoas muscle 192 

and small bowel injury, have been described in up to 63% of patients following renal 193 

denervation [32]; we suggest that, if persistent, these symptoms should prompt further 194 

investigation. 195 

 196 

Another option to optimise attenuation of renal sympathetic nerves is to exploit their non-197 

uniform distribution. The nerves approximate the artery with increasing distance from the 198 

ostium (90% of sympathetic nerves are found within 9mm of the proximal main artery, 5mm 199 

of the distal main artery and 3mm of the post bifurcation artery) [16]. This implies that post-200 

bifurcation vessels may be an attractive target for denervation, particularly as a 3mm ablation 201 

zone should be achievable by most catheters. In dogs, denervation of distal branch vessels 202 

(post bifurcation) resulted in a greater reduction in renal noradrenaline concentration (the key 203 

neurotransmitter of the sympathetic nervous system [33]) than when it was performed in the 204 

main vessel only [18]. Distal vessels will generally be smaller in calibre and with the advent 205 

of the next generation catheters the minimum renal artery diameter permitted for denervation 206 

has been reduced from 4mm to 3mm. Our data suggests that this change of practice would 207 

not increase the number or frequency with which structures are encountered in close vicinity 208 

to the vessel, i.e. within the ‘at risk zone’ where they may be exposed to thermal energy.   209 
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 210 

The biophysical principles of ablation determine the effect that thermal energy has on 211 

surrounding structures. Despite the close proximity of the IVC and the renal vein to the renal 212 

artery, the risk of damage to these is low since a  high blood flow in these vessels will serve 213 

as a heat-sink [15]. The structures of greater concern are the solid organs such as bowel or 214 

liver, which do not have such protection. In our opinion, renal denervation should not be 215 

avoided in patients who on cross-sectional imaging have structures within the ARZ as 216 

currently any risk remains largely theoretical. However, we would suggest increased clinical 217 

vigilance peri-procedurally for complications within this cohort of patients.  218 

 219 

4.1 Limitations 220 

The subjects included in this study were not destined for renal denervation but instead 221 

underwent CT aortograms for other clinical indications. Patients receiving renal denervation 222 

tend to have resistant hypertension and it is conceivable with vascular remodelling that their 223 

anatomy may differ from age-matched controls.  Interestingly though, a large renal 224 

angiography study showed there to be no significant difference in anatomy between those 225 

with resistant hypertension versus non-resistant hypertension [34], and 88% of our cohort 226 

were hypertensive.  We also acknowledge the limitations of a retrospective study design, 227 

however, this should have no effect on an anatomical study. 228 

 229 

5. Conclusions 230 

Our study brings to our attention that at least one-fifth of renal arteries are in close proximity 231 

to vasculature, psoas muscle or small bowel, a finding that has not been previously reported. 232 

To date, safety has not been a significant consideration when using the first generation 233 

catheter. With the advent of more powerful catheters and a more comprehensive ablation 234 
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strategy being preferred, the same safety profile cannot be assumed. The potential risk of 235 

psoas muscle or small bowel injury suggests a possible role for cross-sectional imaging prior 236 

to renal denervation to delineate individual anatomy at risk; as yet, however, the consequence 237 

of delivering thermal energy to these structures remains uncertain. 238 

 239 
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 244 

Figure Legends 245 

 246 

Figure 1: Classification of eligibility for renal denervation based on renal artery 247 

anatomy. 248 

 249 

Figure 2: Axial computerised tomogram showing the close proximity of the right renal 250 

artery (white arrow), the right renal vein (RV) and the psoas muscles (PM). 251 

 252 

Figure 3: Axial computerised tomogram showing the close proximity of the right renal 253 

artery (white arrow) and the inferior vena cava (IV) and the left renal artery (black 254 

arrow) and small bowel (SB). 255 

 256 

Figure 4: Axial computerised tomogram showing the close proximity of the right renal 257 

artery (white arrow) and the liver (L). 258 

 259 
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Figure 5: Axial computerised tomogram showing the close proximity of the left renal 260 

artery (white arrow) and the pancreas (P). 261 

262 
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Table 1: The frequency with which structures are encountered within 10mm and 5mm of the renal artery, comparing right with left. 

 

Structures within 10 or 

5mm of the renal 

artery 

10mm 5mm 10mm vs 5mm 

Right 

Renal 

Artery 

(n=51) 

Left 

Renal 

Artery 

(n=49) 

Total 

(n=100) 

R vs L 

P 

(Fisher’s) 

Right 

Renal 

Artery 

(n=51) 

Left 

Renal 

Artery 

(n=49) 

Total 

(n=100) 

R vs L 

P 

(Fishers’s) 

P (McNemar’s) 

Renal Vein 50 (98%) 47 (96%) 97 (97%) 0.614 48 (94%) 42 (86%) 90 (90%) 0.196 0.016 

IVC 51 (100%) 0 (0%) 51 (51%) <0.001 51 (100%) 0 (0%) 51 (51%) <0.001 1.000 

Psoas Muscles 14 (28%) 11 (22%) 25 (25%) 0.647 10 (17%) 8 (16%) 18 (18%) 0.796 0.016 

Small Bowel 13 (26%) 12 (25%) 25 (25%) 1.000 7 (14%) 4 (8%) 11 (11%) 0.526 <0.001 

Pancreas 2 (4%) 8 (16%) 10 (10%) 0.049 1 (2%) 6 (12%) 7 (7%) 0.057 0.250 

Liver 8 (16%) 0 (0%) 8 (8%) 0.006 3 (6%)  0 (0%) 3 (3%) 0.243 0.063 

Adrenal 0 (0%) 7 (14%) 7 (7%) 0.005 0 (0%) 5 (10%) 5 (5%) 0.025 0.500 

Diaphragm 3 (6%) 2 (4%) 5 (5%) 1.000 2 (4%) 1 (2%) 3 (3%) 1.000 0.500 

Splenic Artery 0 (0%) 3 (6%) 3 (3%) 0.114 0 (0%) 2 (4%) 2 (2%) 0.238 0.500 

Table 1



Splenic Vein 0 (0%) 1 (2%) 1 (1%) 0.490 0 (0%) 0 (0%) 0 (0%)  0.500 

 

 



Table 2: Median distance between structure and renal artery wall, quartile 1 (Q1), and 

quartile 3 (Q3). 

 

 

Median distance (Q1, 

Q3), mm 

Renal Vein 1 (0, 2) 

IVC 0 (0, 1) 

Psoas Muscles 4 (3, 6) 

Small Bowel 6 (3.5, 7) 

Pancreas 5 (1, 6.3) 

Liver 6.5 (4.3, 7.8) 

Adrenal 3 (2, 6) 

Diaphragm 4 (2.5, 9) 

Splenic Artery 5 (3, 8) 

Splenic Vein 7 (7,7) 

 

Table 2



Table 3: Frequency with which structures are encountered within 10mm and 5mm of 

the renal artery wall before and after the first bifurcation. P values are from 

McNemar’s test. 

Structures 

10mm 5mm 

Pre-

Bifurcation 

(n=71) 

Post-

Bifurcation 

(n=71) P  

Pre-

Bifurcation 

(n=71) 

Post-

Bifurcation 

(n=71) P  

Renal Vein 63 55 0.115 59 53 0.286 

IVC 35 12 <0.001 35 11 <0.001 

Psoas Muscles 5 17 0.004 4 15 0.003 

Small Bowel 5 15 0.041 2 8 0.109 

Liver 1 8 0.016 1 3 0.500 

Pancreas 3 6 0.250 2 6 0.125 

Adrenal 4 2 0.625 3 1 0.625 

Diaphragm 4 1 0.250 2 1 1.000 

Splenic Artery 1 1 1.000 0 1 1.000 

Splenic Vein 1 0 1.000 0 0  

 

 

Table 3




