8 research outputs found

    Electrical vestibular stimulation in humans. A narrative review

    Get PDF
    Background: In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/ or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electri- cal vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular func- tion. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear im- plant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. Summa- ry: Vestibular co-stimulation with a CI is based on “spread of excitation,” which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co- stimulation can be functionally used in patients with bilat- eral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activa- tion of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implant- ed electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspe- cific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to in- duce a more unspecific stimulation. Although all three ap- plications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicabil- ity and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the pa- tient population who serves to gain from such technologies

    Electrical vestibular stimulation in humans: a narrative review

    Get PDF
    Background: In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/ or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. Summary: Vestibular co-stimulation with a CI is based on “spread of excitation,” which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular costimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies

    Relationship Between Sensorineural Hearing Loss and Vestibular and Balance Function in Children

    No full text
    Similarities between the peripheral auditory and vestibular systems suggest that children with sensorineural hearing loss (SNHL) may demonstrate vestibular and balance impairments. This hypothesis was studied in 40 children with severe to profound SNHL and unilateral cochlear implants (CI). Vestibular function was assessed with caloric, rotational, and vestibular evoked myogenic potential (VEMP) testing; balance was assessed with standardized static and dynamic tests. Horizontal semicircular canal function was abnormal in 53% (17/32) with caloric, and 39% (14/36) with rotational stimulation. Saccular function was absent bilaterally in 5/26 (19%) and unilaterally in 5/26 (19%) with VEMP. Balance abilities were significantly poorer (μ=12.9±5(SD)) than normal hearing controls (μ=17±5(SD); p=0.0006) and correlated best with horizontal canal function from rotational stimulation (p=0.004;R2=0.24). SNHL from meningitis was associated with worse balance function than other etiologies. Vestibular and balance dysfunction occurred in >1/3 of children with SNHL and CI, and is highly dependent on etiology.MAS

    Electrical vestibular stimulation in humans: a narrative review

    No full text
    Background: In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/ or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. Summary: Vestibular co-stimulation with a CI is based on “spread of excitation,” which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular costimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies

    Annual Selected Bibliography

    No full text
    corecore