1,494 research outputs found

    Chemical Modification of Reactive Multilayered Films Fabricated from Poly(2-Alkenyl Azlactone)s: Design of Surfaces that Prevent or Promote Mammalian Cell Adhesion and Bacterial Biofilm growth

    Get PDF
    We report an approach to the design of reactive polymer films that can be functionalized post-fabrication to either prevent or promote the attachment and growth of cells. Our approach is based on the reactive layer-bylayer assembly of covalently crosslinked thin films using a synthetic polyamine and a polymer containing reactive azlactone functionality. Our results demonstrate (i) that the residual azlactone functionality in these films can be exploited to immobilize amine-functionalized chemical motifs similar to those that promote or prevent cell and protein adhesion when assembled as self-assembled monolayers on gold-coated surfaces and (ii) that the immobilization of these motifs changes significantly the behaviors and interactions of cells with the surfaces of these polymer films. We demonstrate that films treated with the hydrophobic molecule decylamine support the attachment and growth of mammalian cells in vitro. In contrast, films treated with the hydrophilic carbohydrate D-glucamine prevent cell adhesion and growth almost completely. The results of additional experiments suggest that these large differences in cell behavior can be understood, at least in part, in terms of differences in the abilities of these two different chemical motifs to promote or prevent the adsorption of protein onto film-coated surfaces. We demonstrate further that this approach can be used to pattern regions of these reactive films that resist the initial attachment and subsequent invasion of mammalian cells for periods of at least one month in the presence of serum-containing cell culture media. Finally, we report that films that prevent the adhesion and growth of mammalian cells also prevent the initial formation of bacterial biofilms when incubated in the presence of the clinically relevant pathogen Pseudomonas aeruginosa. The results of these studies, collectively, suggest the basis of general approaches to the fabrication and functionalization of thin films that prevent, promote, or pattern cell growth or the formation of biofilms on surfaces of interest in the contexts of both fundamental biological studies and a broad range of other practical applications

    Differential effects of dietary supplements on metabolomic profile of smokers versus non-smokers.

    Get PDF
    BackgroundCigarette smoking is well-known to associate with accelerated skin aging as well as cardiovascular disease and lung cancer, in large part due to oxidative stress. Because metabolites are downstream of genetic variation, as well as transcriptional changes and post-translational modifications of proteins, they are the most proximal reporters of disease states or reversal of disease states.MethodsIn this study, we explore the potential effects of commonly available oral supplements (containing antioxidants, vitamins and omega-3 fatty acids) on the metabolomes of smokers (n = 11) compared to non-smokers (n = 17). At baseline and after 12 weeks of supplementation, metabolomic analysis was performed on serum by liquid and gas chromatography with mass spectroscopy (LC-MS and GC-MS). Furthermore, clinical parameters of skin aging, including cutometry as assessed by three dermatologist raters blinded to subjects' age and smoking status, were measured.ResultsLong-chain fatty acids, including palmitate and oleate, decreased in smokers by 0.76-fold (P = 0.0045) and 0.72-fold (P = 0.0112), respectively. These changes were not observed in non-smokers. Furthermore, age and smoking status showed increased glow (P = 0.004) and a decrease in fine wrinkling (P = 0.038). Cutometry showed an increase in skin elasticity in smokers (P = 0.049) but not in non-smokers. Complexion analysis software (VISIA) revealed decreases in the number of ultraviolet spots (P = 0.031), and cutometry showed increased elasticity (P = 0.05) in smokers but not non-smokers.ConclusionsAdditional future work may shed light on the specific mechanisms by which long-chain fatty acids can lead to increased glow, improved elasticity measures and decreased fine wrinkling in smokers' skin. Our study provides a novel, medicine-focused application of available metabolomic technology to identify changes in sera of human subjects with oxidative stress, and suggests that oral supplementation (in particular, commonly available antioxidants, vitamins and omega-3 fatty acids) affects these individuals in a way that is unique (compared to non-smokers) on a broad level

    Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling

    Get PDF
    Sphingosine kinase (SK) 1 catalyzes the formation of the bioactive lipid sphingosine 1-phosphate, and has been implicated in several biological processes in mammalian cells, including enhanced proliferation, inhibition of apoptosis, and oncogenesis. Human SK (hSK) 1 possesses high instrinsic catalytic activity which can be further increased by a diverse array of cellular agonists. We have shown previously that this activation occurs as a direct consequence of extracellular signal–regulated kinase 1/2–mediated phosphorylation at Ser225, which not only increases catalytic activity, but is also necessary for agonist-induced translocation of hSK1 to the plasma membrane. In this study, we report that the oncogenic effects of overexpressed hSK1 are blocked by mutation of the phosphorylation site despite the phosphorylation-deficient form of the enzyme retaining full instrinsic catalytic activity. This indicates that oncogenic signaling by hSK1 relies on a phosphorylation-dependent function beyond increasing enzyme activity. We demonstrate, through constitutive localization of the phosphorylation-deficient form of hSK1 to the plasma membrane, that hSK1 translocation is the key effect of phosphorylation in oncogenic signaling by this enzyme. Thus, phosphorylation of hSK1 is essential for oncogenic signaling, and is brought about through phosphorylation-induced translocation of hSK1 to the plasma membrane, rather than from enhanced catalytic activity of this enzyme

    The scientific and societal uses of global measurements of subsurface velocity

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Szuts, Z. B., Bower, A. S., Donohue, K. A., Girton, J. B., Hummon, J. M., Katsumata, K., Lumpkin, R., Ortner, P. B., Phillips, H. E., Rossby, H. T., Shay, L. K., Sun, C., & Todd, R. E. The scientific and societal uses of global measurements of subsurface velocity. Frontiers in Marine Science, 6, (2019): 358, doi:10.3389/fmars.2019.00358.Ocean velocity defines ocean circulation, yet the available observations of subsurface velocity are under-utilized by society. The first step to address these concerns is to improve visibility of and access to existing measurements, which include acoustic sampling from ships, subsurface float drifts, and measurements from autonomous vehicles. While multiple programs provide data publicly, the present difficulty in finding, understanding, and using these data hinder broader use by managers, the public, and other scientists. Creating links from centralized national archives to project specific websites is an easy but important way to improve data discoverability and access. A further step is to archive data in centralized databases, which increases usage by providing a common framework for disparate measurements. This requires consistent data standards and processing protocols for all types of velocity measurements. Central dissemination will also simplify the creation of derived products tailored to end user goals. Eventually, this common framework will aid managers and scientists in identifying regions that need more sampling and in identifying methods to fulfill those demands. Existing technologies are capable of improving spatial and temporal sampling, such as using ships of opportunity or from autonomous platforms like gliders, profiling floats, or Lagrangian floats. Future technological advances are needed to fill sampling gaps and increase data coverage.This work was supported by the National Science Foundation, United States, Grant Numbers 1356383 to ZBS, OCE 1756361 to ASB at the Woods Hole Oceanographic Institution, and 1536851 to KAD and HTR; the National Oceanographic and Atmospheric Administration, United States, Ocean Observations and Monitoring Division and Atlantic Oceanographic and Meteorological Laboratory to RL; Royal Caribbean Cruise Ltd., to PBO; the Australian Government Department of the Environment and Energy National Environmental Science Programme and Australian Research Council Centre of Excellence for Climate Extremes to HEP; and the Gulf of Mexico Research Initiative Grant V-487 to LS

    Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics

    Get PDF
    Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named ‘OxoScan-MS’, identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples

    A horizon scan of global conservation issues for 2014

    Get PDF
    This paper presents the output of our fifth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity, but have yet to be widely considered. A team of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics which were identified via an iterative, Delphi-like process. The 15 topics include a carbon market induced financial crash, rapid geographic expansion of macroalgal cultivation, genetic control of invasive species, probiotic therapy for amphibians, and an emerging snake fungal disease. © 2013 Elsevier Ltd

    Closing the gap between science and management of cold-water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater eco-systems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as dis-tinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the founda-tion for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework pro-vides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change. behavioral thermoregulation, climate change adaptation, lotic ecosystem management, refugia, salmonids, temperature, thermal heterogeneity, thermal refugespublishedVersio

    PROTEUS Study: A Prospective Randomised Controlled Trial Evaluating the Use of Artificial Intelligence in Stress Echocardiography.

    Get PDF
    BACKGROUND Stress echocardiography (SE) is one of the most commonly used diagnostic imaging tests for coronary artery disease (CAD) but requires clinicians to visually assess scans to identify patients who may benefit from invasive investigation and treatment. EchoGo Pro provides an automated interpretation of SE based on artificial intelligence (AI) image analysis. In reader studies, use of EchoGo Pro when making clinical decisions improves diagnostic accuracy and confidence. Prospective evaluation in real world practice is now important to understand the impact of EchoGo Pro on the patient pathway and outcome. METHODS/DESIGN PROTEUS is a randomised, multicentre, two-armed, non-inferiority study aiming to recruit 2,500 participants from National Health Service (NHS) hospitals in the UK referred to SE clinics for investigation of suspected CAD. All participants will undergo a stress echocardiogram protocol as per local hospital policy. Participants will be randomised 1:1 to a control group, representing current practice, or an intervention group, in which clinicians will receive an AI image analysis report (EchoGo Pro, Ultromics Ltd, Oxford, UK) to use during image interpretation, indicating the likelihood of severe CAD. The primary outcome will be appropriateness of clinician decision to refer for coronary angiography. Secondary outcomes will assess other health impacts including appropriate use of other clinical management approaches, impact on variability in decision making, patient and clinician qualitative experience and a health economic analysis. DISCUSSION This will be the first study to assess the impact of introducing an AI medical diagnostic aid into the standard care pathway of patients with suspected CAD being investigated with SE

    Contributions Made by CDC25 Phosphatases to Proliferation of Intestinal Epithelial Stem and Progenitor Cells

    Get PDF
    The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs). Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted for all three phosphatases die within one week after Cdc25 disruption. A severe loss of absorptive villi due to a failure of crypt epithelial cells to proliferate was observed in the small intestines of these mice. Because the Cdc25s were globally deleted, the small intestinal phenotype and loss of animal viability could not be solely attributed to an intrinsic defect in the inability of small intestinal stem and progenitor cells to divide. Here, we report the consequences of deleting different combinations of Cdc25s specifically in intestinal epithelial cells. The phenotypes arising in these mice were then compared with those arising in mice globally deleted for the Cdc25s and in mice treated with irinotecan, a chemotherapeutic agent commonly used to treat colorectal cancer. We report that the phenotypes arising in mice globally deleted for the Cdc25s are due to the failure of small intestinal stem and progenitor cells to proliferate and that blocking cell division by inhibiting the cell cycle engine (through Cdc25 loss) versus by inducing DNA damage (via irinotecan) provokes a markedly different response of small intestinal epithelial cells. Finally, we demonstrate that CDC25A and CDC25B but not CDC25C compensate for each other to maintain the proliferative capacity of intestinal epithelial stem and progenitor cells

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore