232 research outputs found

    Cytometer on a chip

    Get PDF
    An assay technique for label-free, highly parallel, qualitative and quantitative detection of specific cell populations in a sample and for assessing cell functional status, cell-cell interactions and cellular responses to drugs, environmental toxins, bacteria, viruses and other factors that may affect cell function. The technique includes a) creating a first array of binding regions in a predetermined spatial pattern on a sensor surface capable of specifically binding the cells to be assayed; b) creating a second set of binding regions in specific spatial patterns relative to the first set designed to efficiently capture potential secreted or released products from cells captured on the first set of binding regions; c) contacting the sensor surface with the sample, and d) simultaneously monitoring the optical properties of all the binding regions of the sensor surface to determine the presence and concentration of specific cell populations in the sample and their functional status by detecting released or secreted bioproducts

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    A pre-registered, multi-lab non-replication of the Action-sentence Compatibility Effect (ACE)

    Get PDF
    The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the movement (e.g., toward) matches the direction of the action in the to-be-judged sentence (e.g., Art gave you the pen describes action toward you). We report on a pre- registered, multi-lab replication of one version of the ACE. The results show that none of the 18 labs involved in the study observed a reliable ACE, and that the meta-analytic estimate of the size of the ACE was essentially zero

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    CD36 Inhibitors Reduce Postprandial Hypertriglyceridemia and Protect against Diabetic Dyslipidemia and Atherosclerosis

    Get PDF
    CD36 is recognized as a lipid and fatty acid receptor and plays an important role in the metabolic syndrome and associated cardiac events. The pleiotropic activity and the multiple molecular associations of this scavenger receptor with membrane associated molecules in different cells and tissues have however questioned its potential as a therapeutic target. The present study shows that it is possible to identify low molecular weight chemicals that can block the CD36 binding and uptake functions. These inhibitors were able to reduce arterial lipid deposition, fatty acid intestinal transit, plasma concentration of triglycerides and glucose, to improve insulin sensitivity, glucose tolerance and to reduce the plasma concentration of HbAc1 in different and independent rodent models. Correlation between the anti-CD36 activity of these inhibitors and the known pathophysiological activity of this scavenger receptor in the development of atherosclerosis and diabetes were observed at pharmacological doses. Thus, CD36 might represent an attractive therapeutic target

    ADRA1A-Gα<sub>q</sub> signalling potentiates adipocyte thermogenesis through CKB and TNAP

    Get PDF
    Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis(1). Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α(1)-adrenergic receptor (AR) and β(3)-AR signalling induces the expression of thermogenic genes of the futile creatine cycle(2,3), and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α(1)-AR subtype (ADRA1A) and Gα(q) to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα(q) and Gα(s) signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A–Gα(q)–futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis

    Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    Get PDF
    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver

    Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.

    Get PDF
    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF
    corecore