20,628 research outputs found

    International nurse migration and HIV/AIDS.

    Get PDF

    Three-photon resonant four-photon ionization of H_2 via the C^1 ∏_u state

    Get PDF
    Ab initio calculations are presented for the vibrational branching ratios in three-photon resonant four-photon ionization of H_2 via the C^1Π_u state. Energy and internuclear distance dependences of the boundfree electronic transition matrix element are explicitly included to estimate deviations from the Franck-Condon approximation. While our calculated branching ratios confirm certain important trends seen experimentally, some differences remain

    Photoionization cross sections of rovibrational levels of the B^1ÎŁ^+_u state of H_2

    Get PDF
    We report theoretical cross sections for direct photoionization of specific rovibrational levels of the B ^1Σ^+_u electronic state of H_2. The calculated cross sections differ considerably from values recently determined by resonant enhanced multiphoton ionization (REMPI) studies. In an attempt to understand the disagreement, we analyze in detail the REMPI dynamics and find that the multiphoton ionization probability is extremely sensitive to the spatial and temporal profiles of the laser pulses. Accurate characterization of laser profiles and their jitter is therefore necessary for a comparison between theory and experiment

    (2+1) resonant enhanced multiphoton ionization of H_2 via the E, F^(1)ÎŁ^+_g state

    Get PDF
    In this paper, we report the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2+1) REMPI of H_2 via the E, F^(1)Σ^+_g state, and compare these with the experimental data of Anderson et al. [Chem. Phys. Lett. 105, 22 (1984)]. These results show that the observed non‐Franck–Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg–valence mixing in the resonant intermediate state

    Two-Bit Messages are Sufficient to Implement Atomic Read/Write Registers in Crash-prone Systems

    Get PDF
    Atomic registers are certainly the most basic objects of computing science. Their implementation on top of an n-process asynchronous message-passing system has received a lot of attention. It has been shown that t \textless{} n/2 (where t is the maximal number of processes that may crash) is a necessary and sufficient requirement to build an atomic register on top of a crash-prone asynchronous message-passing system. Considering such a context, this paper presents an algorithm which implements a single-writer multi-reader atomic register with four message types only, and where no message needs to carry control information in addition to its type. Hence, two bits are sufficient to capture all the control information carried by all the implementation messages. Moreover, the messages of two types need to carry a data value while the messages of the two other types carry no value at all. As far as we know, this algorithm is the first with such an optimality property on the size of control information carried by messages. It is also particularly efficient from a time complexity point of view

    Glucocorticoid receptor expression in 20 solid tumor types using immunohistochemistry assay.

    Get PDF
    BackgroundGlucocorticoid receptor (GR) activity plays a role in many aspects of human physiology and may play a crucial role in chemotherapy resistance in a wide variety of solid tumors. A novel immunohistochemistry (IHC) based assay has been previously developed and validated in order to assess GR immunoreactivity in triple-negative breast cancer. The current study investigates the standardized use of this validated assay to assess GR expression in a broad range of solid tumor malignancies.MethodsArchived formalin-fixed paraffin-embedded tumor bank samples (n=236) from 20 different solid tumor types were analyzed immunohistochemically. Nuclear staining was reported based on the H-score method using differential intensity scores (0, 1+, 2+, or 3+) with the percent stained (out of at least 100 carcinoma cells) recorded at each intensity.ResultsGR was expressed in all tumor types that had been evaluated. Renal cell carcinoma, sarcoma, cervical cancer, and melanoma were those with the highest mean H-scores, indicating high levels of GR expression. Colon, endometrial, and gastric cancers had lower GR staining percentages and intensities, resulting in the lowest mean H-scores.ConclusionA validated IHC assay revealed GR immunoreactivity in all solid tumor types studied and allowed for standardized comparison of reactivity among the different malignancies.ImpactBaseline expression levels of GR may be a useful biomarker when pharmaceutically targeting GR in research or clinical setting

    Shape resonances in the photoionization of cyanogen

    Get PDF
    We have studied the photoionization cross sections and photoelectron asymmetry parameters for ionization of the 1pig(X 2Pig), 5sigmag(A 2Sigma + g), and 4sigmau(B 2Sigma + u) levels of cyanogen using frozen-core Hartree–Fock photoelectron continuum orbitals. The main purpose of these studies has been to extend our understanding of the dynamics of shape resonances from earlier studies of diatomic and smaller polyatomic molecules to a larger polyatomic system. The results do, in fact, reveal a rich shape resonant structure in the electronic continuum of this polyatomic system. There is a low-energy sigmau resonance which, as expected, is the C–C analog of the l=3 shape resonance seen in N2(3sigma - 1g) and several other diatomics. In contrast to this diatomic-like behavior, the presence of the two CN groups in C2N2 results in a second sigmau and a sigmag resonance corresponding to linear combinations of a l=3 shape resonance localized on the CN sites. Moreover, our results also show a pronounced shape resonant behavior in the piu continuum, which, to our knowledge, has not been seen in smaller molecules

    The statistical mechanics of a polygenic characterunder stabilizing selection, mutation and drift

    Full text link
    By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation, and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as 5 loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.Comment: 35 pages, 8 figure

    Self-stabilization Overhead: an Experimental Case Study on Coded Atomic Storage

    Full text link
    Shared memory emulation can be used as a fault-tolerant and highly available distributed storage solution or as a low-level synchronization primitive. Attiya, Bar-Noy, and Dolev were the first to propose a single-writer, multi-reader linearizable register emulation where the register is replicated to all servers. Recently, Cadambe et al. proposed the Coded Atomic Storage (CAS) algorithm, which uses erasure coding for achieving data redundancy with much lower communication cost than previous algorithmic solutions. Although CAS can tolerate server crashes, it was not designed to recover from unexpected, transient faults, without the need of external (human) intervention. In this respect, Dolev, Petig, and Schiller have recently developed a self-stabilizing version of CAS, which we call CASSS. As one would expect, self-stabilization does not come as a free lunch; it introduces, mainly, communication overhead for detecting inconsistencies and stale information. So, one would wonder whether the overhead introduced by self-stabilization would nullify the gain of erasure coding. To answer this question, we have implemented and experimentally evaluated the CASSS algorithm on PlanetLab; a planetary scale distributed infrastructure. The evaluation shows that our implementation of CASSS scales very well in terms of the number of servers, the number of concurrent clients, as well as the size of the replicated object. More importantly, it shows (a) to have only a constant overhead compared to the traditional CAS algorithm (which we also implement) and (b) the recovery period (after the last occurrence of a transient fault) is as fast as a few client (read/write) operations. Our results suggest that CASSS does not significantly impact efficiency while dealing with automatic recovery from transient faults and bounded size of needed resources
    • 

    corecore