716 research outputs found
Comparison of text-messaging to voice telephone interviews for active surveillance of adverse events following immunisation
Objectives: In 2013, the Follow-up and Active Surveillance of Trivalent Influenza Vaccine in Mums (FASTMum) program began using short message service (SMS) to collect adverse event information in pregnant women who recently received trivalent influenza vaccine (TIV). This study was designed to compare data collected via SMS and telephone for the purposes of monitoring vaccine safety.
Methods: A number of 344 women who received TIV were randomly assigned to a telephone interview group. They were telephoned seven days post-vaccination and administered a standard survey soliciting any adverse events following immunisation (AEFI) they experienced. They were matched by brand of vaccine, age group, and residence to 344 women who were sent a SMS seven days post-vaccination. The SMS solicited similar information. AEFI reported by SMS and telephone interview were compared by calculating risk ratios.
Results: Response rate was higher to SMS compared to telephone interview (90.1% vs. 63.9%). Women who were surveyed by SMS were significantly less likely to report an AEFI compared to women who were surveyed by telephone (RR: 0.41; 95% CI: 0.29â0.59). The greatest discrepancies between SMS and telephone interview were for self-reported injection site reactions (3.1% vs. 16.8%) and unsolicited (or âotherâ) events (11.4% vs. 4.1%). Data collected by SMS was significantly timelier.
Conclusions: Data collection by SMS results in significantly improved response rates and timeliness of vaccine safety data. Systems which incorporate SMS could be used to more rapidly detect safety signals and promote more rapid public health response to vaccine quality issues
Archaeological Landscapes during the 10â8 ka Lake Stanley Lowstand on the AlpenaâAmberley Ridge, Lake Huron
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136243/1/gea21590.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136243/2/gea21590_am.pd
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermisâoutermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Recommended from our members
Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV
The momentum distribution of electrons from semi-leptonic decays of charm and
bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is
measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC)
over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of
electrons from bottom to that from charm is presented. The ratio is determined
using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It
is found that the yield of electrons from bottom becomes significant above 4
GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative
quantum chromodynamics (pQCD) calculation agrees with the data within the
theoretical and experimental uncertainties. The extracted total bottom
production cross section at this energy is \sigma_{b\b^bar}= 3.2
^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.Comment: 432 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm
The PHENIX experiement has measured the electron-positron pair mass spectrum
from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions
from light meson decays to e^+e^- pairs have been determined based on
measurements of hadron production cross sections by PHENIX. They account for
nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair
yield remaining after subtracting these contributions is dominated by
semileptonic decays of charmed hadrons correlated through flavor conservation.
Using the spectral shape predicted by PYTHIA, we estimate the charm production
cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which
is consistent with QCD calculations and measurements of single leptons by
PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables.
Submitted to Physics Letters B. v2 fixes technical errors in matching authors
to institutions. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
- âŠ