53 research outputs found

    Dialogic Teaching: Discussing Theoretical Contexts and Reviewing Evidence from Classroom Practice.

    Get PDF
    Drawing on recent developments in dialogic approaches to learning and teaching, I examine the roots of dialogic meaning-making as a concept in classroom practices. Developments in the field of dialogic pedagogy are reviewed and the case for dialogic engagement as an approach to classroom interaction is considered. The implications of dialogic classroom approaches are discussed in the context of educational research and classroom practice. Dialogic practice is contrasted with monologic practices as evidenced by the resilient of the IRF as the default discourse structure in classrooms. Recent evidence suggests the IRF is resistant to attempts to introduce interactive approaches to whole class teaching. Discussion of dialogic practice as a vehicle for increasing pupil engagement at a deep level and raising the quality of classroom interaction is illustrated through a consideration of Philosophy for Children, which is identified as a dialogic approach to classroom practice which has transformative potential for children's learning. Philosophy for Children offers an approach to pedagogy which enables teachers to value pupil voice and promote reflective learning. As such it has much to offer the current debate on dialogic teaching and learning. Research evidence suggests it will promote improved pupil outcomes on a range of assessments

    Unexpected behaviors in molecular transport through size-controlled nanochannels down to the ultra-nanoscale

    Get PDF
    Ionic transport through nanofluidic systems is a problem of fundamental interest in transport physics and has broad relevance in desalination, fuel cells, batteries, filtration, and drug delivery. When the dimension of the fluidic system approaches the size of molecules in solution, fluid properties are not homogeneous and a departure in behavior is observed with respect to continuum-based theories. Here we present a systematic study of the transport of charged and neutral small molecules in an ideal nanofluidic platform with precise channels from the sub-microscale to the ultra-nanoscale (<5 nm). Surprisingly, we find that diffusive transport of nano-confined neutral molecules matches that of charged molecules, as though the former carry an effective charge. Further, approaching the ultra-nanoscale molecular diffusivities suddenly drop by up to an order of magnitude for all molecules, irrespective of their electric charge. New theoretical investigations will be required to shed light onto these intriguing results

    Mapping of a blood pressure QTL on chromosome 17 in American Indians of the strong heart family study

    Get PDF
    Abstract Background Blood pressure (BP) is a complex trait, with a heritability of 30 to 40%. Several genome wide associated BP loci explain only a small fraction of the phenotypic variation. Family studies can provide an important tool for gene discovery by utilizing trait and genetic transmission information among relative-pairs. We have previously described a quantitative trait locus at chromosome 17q25.3 influencing systolic BP in American Indians of the Strong Heart Family Study (SHFS). This locus has been reported to associate with variation in BP traits in family studies of Europeans, African Americans and Hispanics. Methods To follow-up persuasive linkage findings at this locus, we performed comprehensive genotyping in the 1-LOD unit support interval region surrounding this QTL using a multi-step strategy. We first genotyped 1,334 single nucleotide polymorphisms (SNPs) in 928 individuals from families that showed evidence of linkage for BP. We then genotyped a second panel of 306 SNPs in all SHFS participants (N = 3,807) for genes that displayed the strongest evidence of association in the region, and, in a third step, included additional genotyping to better cover the genes of interest and to interrogate plausible candidate genes in the region. Results Three genes had multiple SNPs marginally associated with systolic BP (TBC1D16, HRNBP3 and AZI1). In BQTN analysis, used to estimate the posterior probability that any variant in each gene had an effect on the phenotype, AZI1 showed the most prominent findings (posterior probability of 0.66). Importantly, upon correction for multiple testing, none of our study findings could be distinguished from chance. Conclusion Our findings demonstrate the difficulty of follow-up studies of linkage studies for complex traits, particularly in the context of low powered studies and rare variants underlying linkage peaks

    Working in the Public Interest Law Conference

    Full text link
    Entirely student organized, WIPI seeks to bring together eminent practitioners in their respective fields, students, and faculty to discuss practical approaches to lawyering which can best serve the poor. Practical methods of challenging poverty are often not covered in traditional law school courses. This conference seeks to remedy that and provide dynamic, creative ways to combat poverty through the vehicle of the law

    Social- and Behavioral-Specific Genetic Effects on Blood Pressure Traits: The Strong Heart Family Study

    Get PDF
    Population studies have demonstrated an important role of social, behavioral, and environmental factors in blood pressure levels. Accounting for the genetic interaction of these factors may help to identify common blood pressure susceptibility alleles

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore