25 research outputs found

    Recommended Personal Protective Equipment for Cochlear Implant and Other Mastoid Surgery During the COVID-19 Era

    Get PDF
    © 2020 American Laryngological, Rhinological and Otological Society Inc, "The Triological Society" and American Laryngological Association (ALA) Objectives/Hypothesis: The overall aim of this study was to evaluate personal protective equipment (PPE) that may facilitate the safe recommencement of cochlear implantation in the COVID-19 era, with the broader goal of minimizing the period of auditory deprivation in prelingually deaf children and reducing the risk of cochlear ossification in individuals following meningitis. Methods: The study design comprised 1) an objective assessment of mastoid drilling-induced droplet spread conducted during simulated cochlear implant (CI) surgery and its mitigation via the use of a protective drape tent and 2) an evaluation of three PPE configurations by otologists while performing mastoid drilling on ex vivo temporal bones. The various PPE solutions were assessed in terms of their impact on communication, vital physiological parameters, visual acuity and fields, and acceptability to surgeons using a systematic risk-based approach. Results: Droplet spread during simulated CI surgery extended over 2 m, a distance greater than previously reported. A drape tent significantly reduced droplet spread. The ensemble of a half-face mask and safety spoggles (foam lined safety goggles) had consistently superior performance across all aspects of clinical usability. All other PPE options were found to substantially restrict the visual field, making them unsafe for microsurgery. Conclusions: The results of this preclinical study indicate that the most viable solution to enable the safe conduct of CI and other mastoid surgery is a combination of a filtering facepiece (FFP)3 mask or half-face respirator with safety spoggles as PPE. Prescription spoggles are an option for surgeons who need to wear corrective glasses to operate. A drape tent reduces droplet spread. A multicenter clinical trial to evaluate the effectiveness of PPE should be the next step toward safely performing CI surgery during the COVID-19 era. Level of Evidence: 4 Laryngoscope, 2020

    Looking at handaxes from another angle: Assessing the ergonomic and functional importance of edge form in Acheulean bifaces

    Get PDF
    Edge angle is widely considered to be a morphological attribute that influences the functional performance of lithic technologies. However, the comparative performance capabilities of handaxes that vary in terms of edge angles has never been investigated under experimental conditions. Similarly, detailed accounts of Acheulean handaxe angle variation from archaeological examples have not been reported in the literature. Consequently, it has not previously been possible to assess the extent to which Palaeolithic individuals adhered to specific edge angle ranges during handaxe production or whether resultant artifactual properties may have been in response to varying rates of utility. Here, using a substantial experimental program (n = 500 handaxes), we investigate the impact that edge angle variation has on the cutting efficiency of handaxes at a “whole tool” and “edge-point localized” level. We then examine edge angles in a temporally and geographically wide range of handaxes (n = 643) and assess the extent to which hominins were likely altering tool production choices in response to functional pressures. Our experimental results demonstrate that, up to a certain value, higher edge angles in handaxes can actually increase functional performance. Furthermore, results indicate that edges in the proximal portion of handaxes have the greatest influence over efficiency rates. Combined with examination of archaeological specimens, these results suggest that hominins actively pursued the production of more obtuse edges in the proximal (butt) portion of handaxes in order to increase ergonomic features that facilitated greater efficiency during use. Edge angle values in the proximal portion of the archaeological handaxes were, however, consistently found to be below an efficiency threshold identified at ?70 degrees, above which, an edge’s ability to effectively be applied to cutting tasks decreases markedly. This further suggests that the proximal edges of handaxes, at least occasionally, were required as a functional working edge

    Influence of handaxe size and shape on cutting efficiency: a large-scale experiment and morphometric analysis

    Get PDF
    Handaxes represent one of the most temporally enduring and geographically widespread of Palaeolithic artifacts and thus comprised a key technological strategy of many hominin populations. Archaeologically observable variation in the size (i.e., mass) and shape properties of handaxes has been frequently noted. It is logical to ask whether some of this variability may have had functional implications. Here, we report the results of a large-scale (n = 500 handaxes) experiment designed to examine the influence of variation in handaxe size and shape on cutting efficiency rates during a laboratory task. We used a comprehensive dataset of morphometric (size-adjusted) shape variables and statistical methods (including multivariate methods) to address this issue. Our first set of analyses focused on handaxe mass/size variability. This analysis demonstrated that, at a broad-scale level of variation, handaxe mass may have been free to vary independently of functional (cutting) efficiency. Our analysis also, however, identified that there will be a task-specific threshold in terms of functional effectiveness at the lower end of handaxe mass variation. This implies that hominins may have targeted design forms to meet minimal (task-specific) thresholds, and may also have managed handaxe reduction and discard in respect to such factors. Our second set of analyses focused on handaxe shape variability. This analysis also indicated that considerable variation in handaxe shape may occur independently of any strong effect on cutting efficiency. We discuss how these results have several implications for considerations of handaxe variation in the archaeological record. At a general level, our results demonstrate that variability within and between handaxe assemblages in terms of their size and shape properties will not necessarily have had immediate or strong impact on their effectiveness when used for cutting, and that such variability may have been related to factors other than functional issues

    Formalization of the classification pattern: Survey of classification modeling in information systems engineering

    Get PDF
    Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move towards formalization in part because it illustrates some of the barriers to formalization; including the formal complexity of the pattern and the ontological issues surrounding the ‘one and the many’. Powersets are a way of characterizing the (complex) formal structure of the classification pattern and their formalization has been extensively studied in mathematics since Cantor’s work in the late 19th century. One can use this formalization to develop a useful benchmark. There are various communities within Information Systems Engineering (ISE) that are gradually working towards a formalization of the classification pattern. However, for most of these communities this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other Information Systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature; starting from the relevant theoretical works of the mathematical literature and gradually shifting focus to the ISE literature. The literature survey follows the evolution of ISE’s understanding of how to formalize the classification pattern. The various proposals are assessed using the classical example of classification; the Linnaean taxonomy formalized using powersets as a benchmark for formal expressiveness. The broad conclusion of the survey is that (1) the ISE community is currently in the early stages of the process of understanding how to formalize the classification pattern, particularly in the requirements for expressiveness exemplified by powersets and (2) that there is an opportunity to intervene and speed up the process of adoption by clarifying this expressiveness. Given the central place that the classification pattern has in domain modeling, this intervention has the potential to lead to significant improvements.The UK Engineering and Physical Sciences Research Council (grant EP/K009923/1)

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    The effect of cladribine on immunoglobulin levels compared to B cell targeting therapies in multiple sclerosis

    No full text
    Background: Cladribine is a useful therapeutic option in RRMS with moderate to high disease activity. Its oral formulation and tolerability make it a useful alternative to infusion therapies. Cladribine is known to deplete CD19+ B lymphocytes, but its effect on immunoglobulin subsets is unclear. Objective: To identify whether cladribine therapy in pwMS reduces immunoglobulin subset levels as a surrogate marker of infection risk. Methods: A ‘real-world’ retrospective analysis of 341 pwMS presenting to a single tertiary centre between March 2017 and July 2021. Differences in immunoglobulin levels between cladribine, other disease-modifying therapies and no active treatment were assessed using a univariate ANOVA. Results: Three hundred and forty-one patients had immunoglobulin levels assessed, with 29 patients treated with cladribine. The mean IgG, IgM and IgA levels on cladribine therapy were 10.44 ± 0.40, 0.99 ± 0.09 and 2.04 ± 0.18 g/L respectively. These were not significantly different from patients not on active treatment. There was a statistically significant reduction in IgG and IgM levels for patients treated with ocrelizumab (9.37 ± 0.19 and 0.68 ± 0.04 g/L) and natalizumab (8.72 ± 0.53 and 0.69 ± 0.12 g/L) compared to patients not on treatment. Conclusion: Cladribine therapy for RRMS was not associated with immunoglobulin subset deficiencies. This is contrasted to ocrelizumab and natalizumab which demonstrate significant reductions in both IgG and IgM levels.</p
    corecore